Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,9 +1,8 @@
|
|
1 |
import gradio as gr
|
2 |
import cv2
|
3 |
import os
|
4 |
-
import random
|
5 |
import zipfile
|
6 |
-
from PIL import Image
|
7 |
from datetime import datetime
|
8 |
import hashlib
|
9 |
|
@@ -24,7 +23,7 @@ def procesar_video(video):
|
|
24 |
temp_dir = f"temp_{datetime.now().strftime('%Y%m%d%H%M%S')}"
|
25 |
os.makedirs(temp_dir, exist_ok=True)
|
26 |
|
27 |
-
# Extracción de fotogramas
|
28 |
cap = cv2.VideoCapture(video_path)
|
29 |
frame_count = 0
|
30 |
frame_paths = []
|
@@ -41,53 +40,85 @@ def procesar_video(video):
|
|
41 |
cap.release()
|
42 |
|
43 |
if frame_count == 0:
|
44 |
-
raise gr.Error("No se pudieron extraer
|
45 |
|
46 |
-
#
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
collage = Image.new('RGB',
|
51 |
-
(
|
52 |
-
(
|
|
|
|
|
53 |
positions = [
|
54 |
-
(
|
55 |
-
(
|
56 |
-
(
|
57 |
-
(
|
58 |
]
|
|
|
|
|
59 |
for i, img in enumerate(images):
|
|
|
|
|
|
|
|
|
|
|
60 |
collage.paste(img, positions[i])
|
61 |
-
collage_path = os.path.join(temp_dir, "collage.jpg")
|
62 |
-
collage.save(collage_path)
|
63 |
|
64 |
-
|
|
|
|
|
|
|
65 |
base_name = os.path.splitext(original_name)[0]
|
66 |
-
zip_filename = f"{base_name}.zip"
|
67 |
final_zip_path = os.path.join(temp_dir, zip_filename)
|
68 |
|
69 |
with zipfile.ZipFile(final_zip_path, mode="w") as zipf:
|
|
|
70 |
for img_path in frame_paths:
|
71 |
zipf.write(img_path, os.path.basename(img_path))
|
72 |
|
|
|
73 |
with open(video_path, "rb") as f:
|
74 |
video_hash = hashlib.md5(f.read()).hexdigest()
|
75 |
|
76 |
chain_content = (
|
77 |
-
"=== CADENA DE CUSTODIA ===\r\n\r\n"
|
78 |
-
f"•
|
79 |
f"• Fecha de procesamiento: {timestamp}\r\n"
|
80 |
-
f"• Fotogramas
|
81 |
-
f"• Hash MD5
|
82 |
-
"
|
83 |
-
"
|
|
|
|
|
84 |
)
|
85 |
-
zipf.writestr("
|
86 |
|
87 |
return collage_path, final_zip_path, temp_dir
|
88 |
|
89 |
except Exception as e:
|
90 |
-
raise gr.Error(f"Error
|
91 |
|
92 |
def limpiar_cache(temp_dir):
|
93 |
if temp_dir and os.path.exists(temp_dir):
|
@@ -95,32 +126,33 @@ def limpiar_cache(temp_dir):
|
|
95 |
os.remove(os.path.join(temp_dir, file))
|
96 |
os.rmdir(temp_dir)
|
97 |
|
98 |
-
with gr.Blocks(title="
|
99 |
-
gr.Markdown("# 📷
|
100 |
-
gr.Markdown("**
|
101 |
gr.Markdown("Desarrollado por José R. Leonett para el Grupo de Peritos Forenses Digitales de Guatemala - [www.forensedigital.gt](https://www.forensedigital.gt)")
|
102 |
|
103 |
with gr.Row():
|
104 |
with gr.Column():
|
105 |
video_input = gr.Video(
|
106 |
-
label="
|
107 |
-
interactive=True,
|
108 |
sources=["upload"],
|
109 |
-
format="mp4"
|
|
|
110 |
)
|
111 |
-
procesar_btn = gr.Button("
|
112 |
with gr.Column():
|
113 |
-
|
114 |
-
|
|
|
115 |
|
116 |
temp_dir_state = gr.State()
|
117 |
zip_path_state = gr.State()
|
118 |
|
119 |
-
def
|
120 |
-
return gr.update(interactive=
|
121 |
|
122 |
video_input.change(
|
123 |
-
fn=
|
124 |
inputs=video_input,
|
125 |
outputs=procesar_btn,
|
126 |
queue=False
|
@@ -129,8 +161,8 @@ with gr.Blocks(title="Extracción Forense de Fotogramas") as demo:
|
|
129 |
def procesar_y_mostrar(video):
|
130 |
if temp_dir_state.value:
|
131 |
limpiar_cache(temp_dir_state.value)
|
132 |
-
|
133 |
-
return
|
134 |
|
135 |
procesar_btn.click(
|
136 |
fn=procesar_y_mostrar,
|
|
|
1 |
import gradio as gr
|
2 |
import cv2
|
3 |
import os
|
|
|
4 |
import zipfile
|
5 |
+
from PIL import Image, ImageOps
|
6 |
from datetime import datetime
|
7 |
import hashlib
|
8 |
|
|
|
23 |
temp_dir = f"temp_{datetime.now().strftime('%Y%m%d%H%M%S')}"
|
24 |
os.makedirs(temp_dir, exist_ok=True)
|
25 |
|
26 |
+
# Extracción de todos los fotogramas
|
27 |
cap = cv2.VideoCapture(video_path)
|
28 |
frame_count = 0
|
29 |
frame_paths = []
|
|
|
40 |
cap.release()
|
41 |
|
42 |
if frame_count == 0:
|
43 |
+
raise gr.Error("No se pudieron extraer fotogramas del video")
|
44 |
|
45 |
+
# Selección estratégica de 4 fotogramas equidistantes
|
46 |
+
n_seleccion = 4
|
47 |
+
step = max(1, frame_count // (n_seleccion + 1))
|
48 |
+
selected_indices = [step * (i+1) for i in range(n_seleccion)]
|
49 |
+
selected_frames = [frame_paths[min(i, len(frame_paths)-1)] for i in selected_indices]
|
50 |
+
|
51 |
+
# Creación de collage profesional
|
52 |
+
images = []
|
53 |
+
for img_path in selected_frames:
|
54 |
+
img = Image.open(img_path)
|
55 |
+
bordered_img = ImageOps.expand(img, border=2, fill='white') # Borde blanco
|
56 |
+
images.append(bordered_img)
|
57 |
+
|
58 |
+
# Configuración del diseño
|
59 |
+
img_w, img_h = images[0].size
|
60 |
+
margin = 30
|
61 |
+
border_size = 20
|
62 |
+
shadow_offset = 5
|
63 |
+
|
64 |
+
collage_width = (img_w * 2) + margin + (border_size * 2)
|
65 |
+
collage_height = (img_h * 2) + margin + (border_size * 2)
|
66 |
+
|
67 |
collage = Image.new('RGB',
|
68 |
+
(collage_width, collage_height),
|
69 |
+
(230, 230, 230)) # Fondo gris claro
|
70 |
+
|
71 |
+
# Posiciones con efecto de profundidad
|
72 |
positions = [
|
73 |
+
(border_size, border_size),
|
74 |
+
(border_size + img_w + margin, border_size),
|
75 |
+
(border_size, border_size + img_h + margin),
|
76 |
+
(border_size + img_w + margin, border_size + img_h + margin)
|
77 |
]
|
78 |
+
|
79 |
+
# Pegar imágenes con sombra
|
80 |
for i, img in enumerate(images):
|
81 |
+
# Sombra
|
82 |
+
shadow = Image.new('RGBA', (img_w + shadow_offset, img_h + shadow_offset), (0,0,0,50))
|
83 |
+
collage.paste(shadow, (positions[i][0]+shadow_offset, positions[i][1]+shadow_offset), shadow)
|
84 |
+
|
85 |
+
# Imagen principal
|
86 |
collage.paste(img, positions[i])
|
|
|
|
|
87 |
|
88 |
+
collage_path = os.path.join(temp_dir, "collage_forense.jpg")
|
89 |
+
collage.save(collage_path, quality=95, dpi=(300, 300))
|
90 |
+
|
91 |
+
# Generación del ZIP con cadena de custodia
|
92 |
base_name = os.path.splitext(original_name)[0]
|
93 |
+
zip_filename = f"{base_name}_Fotogramas.zip"
|
94 |
final_zip_path = os.path.join(temp_dir, zip_filename)
|
95 |
|
96 |
with zipfile.ZipFile(final_zip_path, mode="w") as zipf:
|
97 |
+
# Añadir todos los frames
|
98 |
for img_path in frame_paths:
|
99 |
zipf.write(img_path, os.path.basename(img_path))
|
100 |
|
101 |
+
# Archivo TXT con formato profesional
|
102 |
with open(video_path, "rb") as f:
|
103 |
video_hash = hashlib.md5(f.read()).hexdigest()
|
104 |
|
105 |
chain_content = (
|
106 |
+
"=== CADENA DE CUSTODIA DIGITAL ===\r\n\r\n"
|
107 |
+
f"• Archivo original: {original_name}\r\n"
|
108 |
f"• Fecha de procesamiento: {timestamp}\r\n"
|
109 |
+
f"• Fotogramas totales: {frame_count}\r\n"
|
110 |
+
f"• Hash MD5 video: {video_hash}\r\n"
|
111 |
+
f"• Fotogramas muestra: {', '.join([f'#{i+1}' for i in selected_indices])}\r\n\r\n"
|
112 |
+
"Este documento certifica la integridad del proceso de extracción.\n"
|
113 |
+
"Sistema Certificado por Peritos Forenses Digitales de Guatemala. \n"
|
114 |
+
"www.forensedigital.gt"
|
115 |
)
|
116 |
+
zipf.writestr("00_CADENA_CUSTODIA.txt", chain_content)
|
117 |
|
118 |
return collage_path, final_zip_path, temp_dir
|
119 |
|
120 |
except Exception as e:
|
121 |
+
raise gr.Error(f"Error en procesamiento: {str(e)}")
|
122 |
|
123 |
def limpiar_cache(temp_dir):
|
124 |
if temp_dir and os.path.exists(temp_dir):
|
|
|
126 |
os.remove(os.path.join(temp_dir, file))
|
127 |
os.rmdir(temp_dir)
|
128 |
|
129 |
+
with gr.Blocks(title="Extractior Forense de Fotogramas") as demo:
|
130 |
+
gr.Markdown("# 📷 Extractor Forense de Fotogramas de Videos")
|
131 |
+
gr.Markdown("**Herramienta certificada para extracción forense de fotogramas de videos**")
|
132 |
gr.Markdown("Desarrollado por José R. Leonett para el Grupo de Peritos Forenses Digitales de Guatemala - [www.forensedigital.gt](https://www.forensedigital.gt)")
|
133 |
|
134 |
with gr.Row():
|
135 |
with gr.Column():
|
136 |
video_input = gr.Video(
|
137 |
+
label="CARGAR VIDEO",
|
|
|
138 |
sources=["upload"],
|
139 |
+
format="mp4",
|
140 |
+
interactive=True
|
141 |
)
|
142 |
+
procesar_btn = gr.Button("🔍 INICIAR ANÁLISIS", interactive=False)
|
143 |
with gr.Column():
|
144 |
+
gr.Markdown("## Resultados:")
|
145 |
+
gallery_output = gr.Image(label="COLLAGE DE REFERENCIA", height=400)
|
146 |
+
download_file = gr.File(label="DESCARGAR EVIDENCIAS", visible=True)
|
147 |
|
148 |
temp_dir_state = gr.State()
|
149 |
zip_path_state = gr.State()
|
150 |
|
151 |
+
def habilitar_procesado(video):
|
152 |
+
return gr.update(interactive=True) if video else gr.update(interactive=False)
|
153 |
|
154 |
video_input.change(
|
155 |
+
fn=habilitar_procesado,
|
156 |
inputs=video_input,
|
157 |
outputs=procesar_btn,
|
158 |
queue=False
|
|
|
161 |
def procesar_y_mostrar(video):
|
162 |
if temp_dir_state.value:
|
163 |
limpiar_cache(temp_dir_state.value)
|
164 |
+
collage, zip_path, temp_dir = procesar_video(video)
|
165 |
+
return collage, zip_path, temp_dir, zip_path
|
166 |
|
167 |
procesar_btn.click(
|
168 |
fn=procesar_y_mostrar,
|