Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +158 -0
- requirements.txt +6 -0
app.py
ADDED
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import gradio as gr
|
3 |
+
import cv2
|
4 |
+
import os
|
5 |
+
import zipfile
|
6 |
+
from PIL import Image, ImageOps
|
7 |
+
from datetime import datetime
|
8 |
+
import hashlib
|
9 |
+
import shutil
|
10 |
+
|
11 |
+
TEMP_CACHE = None
|
12 |
+
|
13 |
+
def procesar_video(video_path):
|
14 |
+
try:
|
15 |
+
original_name = os.path.basename(video_path)
|
16 |
+
allowed_extensions = ('.mp4', '.avi', '.mov', '.mkv')
|
17 |
+
if not original_name.lower().endswith(allowed_extensions):
|
18 |
+
raise gr.Error("Solo se permiten archivos de video (mp4, avi, mov, mkv)")
|
19 |
+
|
20 |
+
timestamp = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
|
21 |
+
temp_dir = f"temp_{datetime.now().strftime('%Y%m%d%H%M%S')}"
|
22 |
+
os.makedirs(temp_dir, exist_ok=True)
|
23 |
+
|
24 |
+
cap = cv2.VideoCapture(video_path)
|
25 |
+
frame_count = 0
|
26 |
+
frame_paths = []
|
27 |
+
while True:
|
28 |
+
ret, frame = cap.read()
|
29 |
+
if not ret:
|
30 |
+
break
|
31 |
+
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
32 |
+
img = Image.fromarray(frame_rgb)
|
33 |
+
img_path = os.path.join(temp_dir, f"frame_{frame_count:04d}.jpg")
|
34 |
+
img.save(img_path)
|
35 |
+
frame_paths.append(img_path)
|
36 |
+
frame_count += 1
|
37 |
+
cap.release()
|
38 |
+
|
39 |
+
if frame_count == 0:
|
40 |
+
raise gr.Error("No se pudieron extraer fotogramas del video")
|
41 |
+
|
42 |
+
n_seleccion = 4
|
43 |
+
step = max(1, frame_count // (n_seleccion + 1))
|
44 |
+
selected_indices = [step * (i+1) for i in range(n_seleccion)]
|
45 |
+
selected_frames = [frame_paths[min(i, len(frame_paths)-1)] for i in selected_indices]
|
46 |
+
|
47 |
+
images = []
|
48 |
+
for img_path in selected_frames:
|
49 |
+
img = Image.open(img_path)
|
50 |
+
bordered_img = ImageOps.expand(img, border=2, fill='white')
|
51 |
+
images.append(bordered_img)
|
52 |
+
|
53 |
+
img_w, img_h = images[0].size
|
54 |
+
margin = 30
|
55 |
+
border_size = 20
|
56 |
+
shadow_offset = 5
|
57 |
+
|
58 |
+
collage_width = (img_w * 2) + margin + (border_size * 2)
|
59 |
+
collage_height = (img_h * 2) + margin + (border_size * 2)
|
60 |
+
|
61 |
+
collage = Image.new('RGB', (collage_width, collage_height), (230, 230, 230))
|
62 |
+
positions = [
|
63 |
+
(border_size, border_size),
|
64 |
+
(border_size + img_w + margin, border_size),
|
65 |
+
(border_size, border_size + img_h + margin),
|
66 |
+
(border_size + img_w + margin, border_size + img_h + margin)
|
67 |
+
]
|
68 |
+
|
69 |
+
for i, img in enumerate(images):
|
70 |
+
shadow = Image.new('RGBA', (img_w + shadow_offset, img_h + shadow_offset), (0,0,0,50))
|
71 |
+
collage.paste(shadow, (positions[i][0]+shadow_offset, positions[i][1]+shadow_offset), shadow)
|
72 |
+
collage.paste(img, positions[i])
|
73 |
+
|
74 |
+
collage_path = os.path.join(temp_dir, "collage_forense.jpg")
|
75 |
+
collage.save(collage_path, quality=95, dpi=(300, 300))
|
76 |
+
|
77 |
+
base_name = os.path.splitext(original_name)[0]
|
78 |
+
zip_filename = f"{base_name}_Fotogramas.zip"
|
79 |
+
final_zip_path = os.path.join(temp_dir, zip_filename)
|
80 |
+
|
81 |
+
with zipfile.ZipFile(final_zip_path, mode="w") as zipf:
|
82 |
+
for img_path in frame_paths:
|
83 |
+
zipf.write(img_path, os.path.basename(img_path))
|
84 |
+
|
85 |
+
with open(video_path, "rb") as f:
|
86 |
+
video_hash = hashlib.md5(f.read()).hexdigest()
|
87 |
+
|
88 |
+
chain_content = (
|
89 |
+
"=== CADENA DE CUSTODIA DIGITAL ===\r\n\r\n"
|
90 |
+
f"• Archivo original: {original_name}\r\n"
|
91 |
+
f"• Fecha de procesamiento: {timestamp}\r\n"
|
92 |
+
f"• Fotogramas totales: {frame_count}\r\n"
|
93 |
+
f"• Hash MD5 video: {video_hash}\r\n"
|
94 |
+
f"• Fotogramas muestra: {', '.join([f'#{i+1}' for i in selected_indices])}\r\n\r\n"
|
95 |
+
"Este documento certifica la integridad del proceso de extracción.\n"
|
96 |
+
"Sistema Certificado por Peritos Forenses Digitales de Guatemala. \n"
|
97 |
+
"www.forensedigital.gt"
|
98 |
+
)
|
99 |
+
zipf.writestr("00_CADENA_CUSTODIA.txt", chain_content)
|
100 |
+
|
101 |
+
global TEMP_CACHE
|
102 |
+
TEMP_CACHE = temp_dir
|
103 |
+
|
104 |
+
return collage_path, final_zip_path
|
105 |
+
|
106 |
+
except Exception as e:
|
107 |
+
raise gr.Error(f"Error en procesamiento: {str(e)}")
|
108 |
+
|
109 |
+
def limpiar_cache():
|
110 |
+
global TEMP_CACHE
|
111 |
+
if TEMP_CACHE and os.path.exists(TEMP_CACHE):
|
112 |
+
shutil.rmtree(TEMP_CACHE)
|
113 |
+
TEMP_CACHE = None
|
114 |
+
|
115 |
+
with gr.Blocks(title="Extractor Forense de Fotogramas") as demo:
|
116 |
+
gr.Markdown("# 📷 Extractor Forense de Fotogramas de Videos")
|
117 |
+
gr.Markdown("""
|
118 |
+
**Herramienta certificada para extracción forense de fotogramas de videos**
|
119 |
+
(No se guarda ninguna información).
|
120 |
+
""")
|
121 |
+
gr.Markdown("Desarrollado por José R. Leonett para el Grupo de Peritos Forenses Digitales de Guatemala - [www.forensedigital.gt](https://www.forensedigital.gt)")
|
122 |
+
|
123 |
+
with gr.Row():
|
124 |
+
with gr.Column(scale=1):
|
125 |
+
video_input = gr.Video(
|
126 |
+
label="🎞️ VIDEO CARGADO",
|
127 |
+
format="mp4",
|
128 |
+
interactive=True,
|
129 |
+
height=320
|
130 |
+
)
|
131 |
+
procesar_btn = gr.Button("🔍 INICIAR ANÁLISIS", interactive=False)
|
132 |
+
with gr.Column(scale=1):
|
133 |
+
gallery_output = gr.Image(label="📸 COLLAGE DE REFERENCIA", height=400)
|
134 |
+
download_file = gr.File(label="📂 DESCARGAR EVIDENCIAS", visible=True)
|
135 |
+
|
136 |
+
def habilitar_procesado(video):
|
137 |
+
limpiar_cache()
|
138 |
+
return gr.update(interactive=True), None, None
|
139 |
+
|
140 |
+
video_input.change(
|
141 |
+
fn=habilitar_procesado,
|
142 |
+
inputs=video_input,
|
143 |
+
outputs=[procesar_btn, gallery_output, download_file],
|
144 |
+
queue=False
|
145 |
+
)
|
146 |
+
|
147 |
+
def procesar_y_mostrar(video):
|
148 |
+
collage, zip_path = procesar_video(video)
|
149 |
+
return collage, zip_path
|
150 |
+
|
151 |
+
procesar_btn.click(
|
152 |
+
fn=procesar_y_mostrar,
|
153 |
+
inputs=video_input,
|
154 |
+
outputs=[gallery_output, download_file]
|
155 |
+
)
|
156 |
+
|
157 |
+
if __name__ == "__main__":
|
158 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio>=4.0.0
|
2 |
+
numpy>=1.26.0
|
3 |
+
opencv-python-headless>=4.8.0
|
4 |
+
opencv-python>=4.8.0
|
5 |
+
pillow>=10.0.0
|
6 |
+
matplotlib>=3.7.0
|