Spaces:
Running
Running
File size: 4,447 Bytes
ac13c4a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 |
from scholarly import scholarly
import csv
from scholarly import ProxyGenerator, scholarly
import os
import requests
api_key = os.getenv('ELSEVIER_API_KEY')
# Initialize a global variable to track if the proxy setup has been done
proxy_setup_done = False
def setup_proxy():
global proxy_setup_done
# Check if the proxy setup has already been done
if not proxy_setup_done:
# Set up a ProxyGenerator object to use free proxies
pg = ProxyGenerator()
pg.FreeProxies()
scholarly.use_proxy(pg)
# Mark the setup as done
proxy_setup_done = True
print("Proxy setup completed.")
else:
print("Proxy setup was already completed earlier in this session.")
# Example usage
setup_proxy()
def fetch_papers(search_string, min_results=8):
search_query = scholarly.search_pubs(search_string)
papers_details = []
for _ in range(min_results):
try:
paper = next(search_query)
paper_details = {
'title': paper['bib']['title'],
'author': paper['bib'].get('author'),
'pub_year': paper['bib'].get('pub_year'),
'publication_url': paper.get('pub_url', 'Not Available'),
'journal_name': paper['bib'].get('journal', 'Not Available'),
# Attempting to extract DOI, publication date, and making an educated guess on paper type
'doi': paper.get('doi', 'Not Available'),
'publication_date': paper['bib'].get('pub_year', 'Not Available'), # Simplified to publication year
'paper_type': 'Journal' if 'journal' in paper['bib'] else 'Conference' if 'conference' in paper['bib'] else 'Primary Study' # Simplistic categorization
}
papers_details.append(paper_details)
except StopIteration:
break # Exit if there are no more results
return papers_details
def save_papers_to_csv(papers_details, filename='papers.csv'):
fieldnames = ['title', 'author', 'pub_year', 'publication_url', 'journal_name', 'doi', 'publication_date', 'paper_type']
with open(filename, mode='w', newline='', encoding='utf-8') as file:
writer = csv.DictWriter(file, fieldnames=fieldnames)
writer.writeheader()
for paper in papers_details:
writer.writerow(paper)
def search_elsevier(search_string, start_year, end_year, limit):
url = "https://api.elsevier.com/content/search/scopus"
headers = {
"X-ELS-APIKey": api_key,
"Accept": "application/json"
}
query = f"TITLE-ABS-KEY({search_string}) AND PUBYEAR = {start_year}"
params = {
"query": query,
"count": limit,
}
response = requests.get(url, headers=headers, params=params)
if response.status_code == 200:
response_data = response.json()
papers = response_data.get('search-results', {}).get('entry', [])
parsed_papers = []
for paper in papers:
parsed_paper = {
"affiliation-country": next((affil.get("affiliation-country", "Not Available") for affil in paper.get("affiliation", [])), "Not Available"),
"affilname": next((affil.get("affilname", "Not Available") for affil in paper.get("affiliation", [])), "Not Available"),
"creator": paper.get("dc:creator", "Not Available"),
"identifier": paper.get("dc:identifier", "Not Available"),
"title": paper.get("dc:title", "Not Available"),
"link": next((link["@href"] for link in paper.get("link", []) if link["@ref"] == "scopus"), "Not Available"),
"year": paper.get("prism:coverDate", "Not Available").split("-")[0],
"openaccess": paper.get("openaccess", "0") == "1",
"publicationName": paper.get("prism:publicationName", "Not Available"),
"aggregationType": paper.get("prism:aggregationType", "Not Available"),
"volume": paper.get("prism:volume", "Not Available"),
"doi": paper.get("prism:doi", "Not Available")
}
parsed_papers.append(parsed_paper)
return parsed_papers
else:
print(f"Failed to fetch papers: {response.status_code} {response.text}")
return {"error": "Failed to fetch papers from Elsevier", "status_code": response.status_code, "message": response.text} |