Spaces:
Sleeping
Sleeping
File size: 8,696 Bytes
ac13c4a 24e5041 ded74bf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
from dotenv import load_dotenv
import os
import tempfile
from flask import Flask, render_template,send_file, send_from_directory, request, jsonify
import datetime
from agents import generate_research_questions_and_purpose_with_gpt, generate_abstract_with_openai, generate_summary_conclusion, generate_introduction_summary_with_openai
import json
from agents2 import generate_search_string_with_gpt
from agents3 import fetch_papers, save_papers_to_csv, search_elsevier
from agents4 import filter_papers_with_gpt_turbo, generate_response_gpt4_turbo
from flask_cors import CORS
import requests
from datetime import datetime
load_dotenv()
# x = datetime.datetime.now()
key = os.getenv("ELSEVIER_API_KEY")
app = Flask(__name__, static_folder='dist')
CORS(app)
@app.route('/api/generate_search_string', methods=['POST'])
def generate_search_string_route():
data = request.json
objective = data.get('objective')
research_questions = data.get('research_questions', []) # Default to an empty list if not provided
if not objective or not research_questions:
return jsonify({"error": "Objective and research questions are required."}), 400
search_string = generate_search_string_with_gpt(objective, research_questions)
return jsonify({"search_string": search_string})
@app.route('/api/generate_research_questions_and_purpose', methods=['POST'])
def generate_research_questions_and_purpose():
print("request:", request.method)
data = request.json
objective = data.get('objective')
num_questions = int(data.get('num_questions', 1)) # Ensure num_questions is treated as an integer
# Validate input
if not objective:
return jsonify({"error": "Objective is required"}), 400
if num_questions < 1:
return jsonify({"error": "Number of questions must be at least 1"}), 400
questions_and_purposes = generate_research_questions_and_purpose_with_gpt(objective, num_questions)
print(questions_and_purposes)
return jsonify({"research_questions": questions_and_purposes})
# Agent 4
@app.route('/api/filter_papers', methods=['POST'])
def filter_papers_route():
data = request.json
search_string = data.get('search_string', '')
papers = data.get('papers', []) # Expecting only titles in papers
filtered_papers = filter_papers_with_gpt_turbo(search_string, papers)
return jsonify({"filtered_papers": filtered_papers})
@app.route('/api/answer_question', methods=['POST'])
def answer_question():
data = request.json
questions = data.get('questions') # This should now be a list of questions
papers_info = data.get('papers_info', [])
if not questions or not papers_info:
return jsonify({"error": "Both questions and papers information are required."}), 400
answers = []
for question in questions:
answer = generate_response_gpt4_turbo(question, papers_info)
answers.append({"question": question, "answer": answer})
return jsonify({"answers": answers})
@app.route('/api/generate-summary-abstract', methods=['POST'])
def generate_summary_abstract():
try:
data = request.json
research_questions = data.get('research_questions', 'No research questions provided.')
objective = data.get('objective', 'No objective provided.')
search_string = data.get('search_string', 'No search string provided.')
# Constructing the prompt for AI abstract generation
prompt = f"Based on the research questions '{research_questions}', the objective '{objective}', and the search string '{search_string}', generate a comprehensive abstract."
# Generate the abstract using OpenAI's GPT model
summary_abstract = generate_abstract_with_openai(prompt)
return jsonify({"summary_abstract": summary_abstract})
except Exception as e:
return jsonify({"error": str(e)}), 500
@app.route("/api/generate-summary-conclusion", methods=["POST"])
def generate_summary_conclusion_route():
data = request.json
papers_info = data.get("papers_info", [])
try:
summary_conclusion = generate_summary_conclusion(papers_info)
return jsonify({"summary_conclusion": summary_conclusion})
except Exception as e:
return jsonify({"error": str(e)}), 500
@app.route('/api/generate-introduction-summary', methods=['POST'])
def generate_introduction_summary():
try:
data = request.json
total_papers = len(data.get("all_papers", []))
filtered_papers_count = len(data.get("filtered_papers", []))
research_questions = data.get("research_questions", [])
objective = data.get("objective", "")
search_string = data.get("search_string", "")
answers = data.get("answers", [])
# Constructing the introduction based on the provided data
prompt_intro = f"This document synthesizes findings from {total_papers} papers related to \"{search_string}\". Specifically, {filtered_papers_count} papers were thoroughly examined. The primary objective is {objective}."
prompt_questions = "\n\nResearch Questions:\n" + "\n".join([f"- {q}" for q in research_questions])
prompt_answers = "\n\nSummary of Findings:\n" + "\n".join([f"- {ans['question']}: {ans['answer'][:250]}..." for ans in answers]) # Brief summary of answers
prompt = prompt_intro + prompt_questions + prompt_answers + "\n\nGenerate a coherent introduction and summary based on this compilation."
# Generating the introduction summary using OpenAI's GPT model
introduction_summary = generate_introduction_summary_with_openai(prompt)
return jsonify({"introduction_summary": introduction_summary})
except Exception as e:
return jsonify({"error": str(e)}), 500
@app.route("/api/generate-summary-all", methods=["POST"])
def generate_summary_all_route():
data = request.json
abstract_summary = data.get("abstract_summary", "")
intro_summary = data.get("intro_summary", "") # Corrected key to "intro_summary"
conclusion_summary = data.get("conclusion_summary", "") # Corrected key to "conclusion_summary"
try:
# Assuming you have a LaTeX template named 'latex_template.tex' in the 'templates' folder
print("inside")
latex_content = render_template(
"latex_template.tex",
abstract=abstract_summary,
introduction=intro_summary,
conclusion=conclusion_summary,
)
# Save the LaTeX content to a file in the same directory as this script
current_time = datetime.now().strftime('%Y%m%d%H%M%S')
milliseconds = datetime.now().microsecond // 1000
file_path = os.path.join(os.path.dirname(__file__), f"{current_time}_{milliseconds}summary.tex")
print(file_path)
with open(file_path, "w", encoding="utf-8") as file:
file.write(latex_content)
with tempfile.NamedTemporaryFile(mode='w+', suffix='.tex', delete=False, encoding='utf-8') as temp_file:
temp_file.write(latex_content)
temp_file_path = temp_file.name
return send_file(temp_file_path, as_attachment=True, download_name='paper_summary.tex')
# return jsonify({"latex_file_path": file_path})
except Exception as e:
return jsonify({"error": str(e)}), 500
# # Route for serving static files (like manifest.json)
@app.route('/')
def index():
return send_from_directory(app.static_folder, 'index.html')
@app.route('/<path:path>')
def serve(path):
print("filename:", app.static_folder+ "/" + path)
if path != "" and os.path.exists(app.static_folder+ "/" + path):
return send_from_directory(app.static_folder, path)
else:
return send_from_directory(app.static_folder, 'index.html')
# return send_from_directory('templates/static/', filename)
# # Route for rendering the React app
# @app.route('/')
# def index():
# print("calling")
# return render_template('index.html')
@app.route('/api/search_papers', methods=['POST'])
def search_papers():
data = request.json
search_string = data.get('search_string', '')
start_year = data.get('start_year', '')
end_year = data.get('end_year', '')
limit = data.get('limit', 4) # Default limit to 10 papers if not specified
if not search_string or not start_year:
return jsonify({'error': 'Search string and start year are required.'}), 400
results = search_elsevier(search_string, start_year, end_year, limit)
return jsonify(results)
# Running app
if __name__ == '__main__':
#app.run(debug=True)
app.run(host=β0.0.0.0β,port=5000)
|