File size: 8,696 Bytes
ac13c4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24e5041
ded74bf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
from dotenv import load_dotenv
import os
import tempfile
from flask import Flask, render_template,send_file, send_from_directory, request, jsonify
import datetime
from agents import generate_research_questions_and_purpose_with_gpt, generate_abstract_with_openai, generate_summary_conclusion, generate_introduction_summary_with_openai
import json
from agents2 import generate_search_string_with_gpt
from agents3 import fetch_papers, save_papers_to_csv, search_elsevier
from agents4 import filter_papers_with_gpt_turbo, generate_response_gpt4_turbo
from flask_cors import CORS
import requests
from datetime import datetime

load_dotenv()
# x = datetime.datetime.now()

key = os.getenv("ELSEVIER_API_KEY")

app = Flask(__name__, static_folder='dist')
CORS(app)
@app.route('/api/generate_search_string', methods=['POST'])
def generate_search_string_route():
    data = request.json
    objective = data.get('objective')
    research_questions = data.get('research_questions', [])  # Default to an empty list if not provided

    if not objective or not research_questions:
        return jsonify({"error": "Objective and research questions are required."}), 400

    search_string = generate_search_string_with_gpt(objective, research_questions)
    return jsonify({"search_string": search_string})
@app.route('/api/generate_research_questions_and_purpose', methods=['POST'])

def generate_research_questions_and_purpose():
    print("request:", request.method)
    data = request.json
    objective = data.get('objective')
    num_questions = int(data.get('num_questions', 1))  # Ensure num_questions is treated as an integer

    # Validate input
    if not objective:
        return jsonify({"error": "Objective is required"}), 400
    if num_questions < 1:
        return jsonify({"error": "Number of questions must be at least 1"}), 400

    questions_and_purposes = generate_research_questions_and_purpose_with_gpt(objective, num_questions)
    print(questions_and_purposes)
    return jsonify({"research_questions": questions_and_purposes})


# Agent 4 

@app.route('/api/filter_papers', methods=['POST'])
def filter_papers_route():
    data = request.json
    search_string = data.get('search_string', '')
    papers = data.get('papers', [])  # Expecting only titles in papers
    
    filtered_papers = filter_papers_with_gpt_turbo(search_string, papers)
    return jsonify({"filtered_papers": filtered_papers})


@app.route('/api/answer_question', methods=['POST'])
def answer_question():
    data = request.json
    questions = data.get('questions')  # This should now be a list of questions
    papers_info = data.get('papers_info', [])
 
    if not questions or not papers_info:
        return jsonify({"error": "Both questions and papers information are required."}), 400
    
    answers = []
    for question in questions:
        answer = generate_response_gpt4_turbo(question, papers_info)
        answers.append({"question": question, "answer": answer})
    
    return jsonify({"answers": answers})


@app.route('/api/generate-summary-abstract', methods=['POST'])
def generate_summary_abstract():
    try:
        data = request.json
        
        research_questions = data.get('research_questions', 'No research questions provided.')
        objective = data.get('objective', 'No objective provided.')
        search_string = data.get('search_string', 'No search string provided.')

        # Constructing the prompt for AI abstract generation
        prompt = f"Based on the research questions '{research_questions}', the objective '{objective}', and the search string '{search_string}', generate a comprehensive abstract."

        # Generate the abstract using OpenAI's GPT model
        summary_abstract = generate_abstract_with_openai(prompt)

        return jsonify({"summary_abstract": summary_abstract})
    except Exception as e:
        return jsonify({"error": str(e)}), 500


@app.route("/api/generate-summary-conclusion", methods=["POST"])
def generate_summary_conclusion_route():
    data = request.json
    papers_info = data.get("papers_info", [])
    try:
        summary_conclusion = generate_summary_conclusion(papers_info)
        return jsonify({"summary_conclusion": summary_conclusion})
    except Exception as e:
        return jsonify({"error": str(e)}), 500

@app.route('/api/generate-introduction-summary', methods=['POST'])
def generate_introduction_summary():
    try:
        data = request.json
        total_papers = len(data.get("all_papers", []))
        filtered_papers_count = len(data.get("filtered_papers", []))
        research_questions = data.get("research_questions", [])
        objective = data.get("objective", "")
        search_string = data.get("search_string", "")
        answers = data.get("answers", [])

        # Constructing the introduction based on the provided data
        prompt_intro = f"This document synthesizes findings from {total_papers} papers related to \"{search_string}\". Specifically, {filtered_papers_count} papers were thoroughly examined. The primary objective is {objective}."
        
        prompt_questions = "\n\nResearch Questions:\n" + "\n".join([f"- {q}" for q in research_questions])
        
        prompt_answers = "\n\nSummary of Findings:\n" + "\n".join([f"- {ans['question']}: {ans['answer'][:250]}..." for ans in answers])  # Brief summary of answers
        
        prompt = prompt_intro + prompt_questions + prompt_answers + "\n\nGenerate a coherent introduction and summary based on this compilation."

        # Generating the introduction summary using OpenAI's GPT model
        introduction_summary = generate_introduction_summary_with_openai(prompt)

        return jsonify({"introduction_summary": introduction_summary})
    except Exception as e:
        return jsonify({"error": str(e)}), 500


@app.route("/api/generate-summary-all", methods=["POST"])
def generate_summary_all_route():
    data = request.json
    abstract_summary = data.get("abstract_summary", "")
    intro_summary = data.get("intro_summary", "")  # Corrected key to "intro_summary"
    conclusion_summary = data.get("conclusion_summary", "")  # Corrected key to "conclusion_summary"

    try:
        # Assuming you have a LaTeX template named 'latex_template.tex' in the 'templates' folder
        print("inside")
        latex_content = render_template(
            "latex_template.tex",
            abstract=abstract_summary,
            introduction=intro_summary,
            conclusion=conclusion_summary,
        )

        # Save the LaTeX content to a file in the same directory as this script
        current_time = datetime.now().strftime('%Y%m%d%H%M%S')
        milliseconds = datetime.now().microsecond // 1000
        file_path = os.path.join(os.path.dirname(__file__), f"{current_time}_{milliseconds}summary.tex")
        print(file_path)
        with open(file_path, "w", encoding="utf-8") as file:
            file.write(latex_content)
        with tempfile.NamedTemporaryFile(mode='w+', suffix='.tex', delete=False, encoding='utf-8') as temp_file:
            temp_file.write(latex_content)
            temp_file_path = temp_file.name
        return send_file(temp_file_path, as_attachment=True, download_name='paper_summary.tex')
        # return jsonify({"latex_file_path": file_path})
    except Exception as e:
        return jsonify({"error": str(e)}), 500

# # Route for serving static files (like manifest.json)
@app.route('/')
def index():
    return send_from_directory(app.static_folder, 'index.html')
@app.route('/<path:path>')
def serve(path):
    print("filename:", app.static_folder+ "/" + path)
    if path != "" and os.path.exists(app.static_folder+ "/" + path):
        return send_from_directory(app.static_folder, path)
    else:
        return send_from_directory(app.static_folder, 'index.html')
    # return send_from_directory('templates/static/', filename)
# # Route for rendering the React app
# @app.route('/')
# def index():
#     print("calling")
#     return render_template('index.html')





@app.route('/api/search_papers', methods=['POST'])
def search_papers():
    data = request.json
    search_string = data.get('search_string', '')
    start_year = data.get('start_year', '')
    end_year = data.get('end_year', '')
    limit = data.get('limit', 4)  # Default limit to 10 papers if not specified
    
    if not search_string or not start_year:
        return jsonify({'error': 'Search string and start year are required.'}), 400
    
    results = search_elsevier(search_string, start_year, end_year, limit)
    return jsonify(results)

# Running app
if __name__ == '__main__':
    #app.run(debug=True)
    app.run(host=β€˜0.0.0.0’,port=5000)