Spaces:
Running
Running
# agents.py | |
import requests | |
import json | |
from flask import jsonify | |
import os | |
key = os.getenv("API-KEY") | |
api_key = key | |
import re # Import the regular expressions library | |
def generate_research_questions_and_purpose_with_gpt(objective, num_questions): | |
headers = { | |
"Authorization": f"Bearer {api_key}", | |
"Content-Type": "application/json" | |
} | |
# Construct the prompt dynamically | |
prompt_content = f"You are a helpful assistant capable of generating research questions along with their purposes for a systematic literature review.\n" | |
prompt_content = f"Given the research objective: '{objective}', generate {num_questions} distinct research questions, each followed by its specific purpose. 'To examine', or 'To investigate'." | |
data = { | |
"model": "gpt-3.5-turbo", | |
"messages": [ | |
{"role": "system", "content": "You are a helpful assistant capable of generating research questions along with their purposes for a systematic literature review."}, | |
{"role": "user", "content": prompt_content} | |
], | |
"temperature": 0.7 | |
} | |
response = requests.post("https://api.openai.com/v1/chat/completions", headers=headers, data=json.dumps(data)) | |
if response.status_code == 200: | |
result = response.json() | |
messages = result['choices'][0]['message']['content'] | |
lines = [line for line in messages.strip().split('\n') if line] | |
question_purpose_objects = [] | |
for i in range(0, len(lines), 2): | |
# Using regex to dynamically remove "Research question X:" where X is any number | |
question = re.sub(r"^Research question( \d+)?: ", "", lines[i], flags=re.IGNORECASE) | |
purpose = lines[i+1] if i+1 < len(lines) else "Purpose not provided" | |
# Optionally, remove the prefix from purpose if needed | |
# purpose = purpose.replace("Purpose: ", "") | |
question_purpose_objects.append({"question": question, "purpose": purpose}) | |
if num_questions == 1 and question_purpose_objects: | |
return {"research_questions": question_purpose_objects} | |
else: | |
return {"research_questions": question_purpose_objects} | |
else: | |
print(f"Error: {response.status_code}") | |
print(response.text) | |
return [] | |
def generate_summary_conclusion(papers_info): | |
headers = {"Authorization": f"Bearer {api_key}", "Content-Type": "application/json"} | |
prompt_parts = ["Summarize the conclusions of the following papers:"] | |
for paper in papers_info: | |
title = paper.get("title") | |
author = paper.get("creator", "An author") | |
year = paper.get("year", "A year") | |
prompt_parts.append(f"- '{title}' by {author} ({year})") | |
prompt = " ".join(prompt_parts) | |
data = { | |
"model": "gpt-3.5-turbo", | |
"messages": [ | |
{"role": "system", "content": "You are a helpful assistant."}, | |
{"role": "user", "content": prompt}, | |
], | |
} | |
response = requests.post( | |
"https://api.openai.com/v1/chat/completions", | |
headers=headers, | |
data=json.dumps(data), | |
) | |
if response.status_code == 200: | |
result = response.json() | |
content = result["choices"][0]["message"]["content"] | |
summary_conclusion = content.strip() | |
else: | |
return jsonify({"error": "Failed to generate a summary conclusion."}), 500 | |
return summary_conclusion | |
def generate_abstract_with_openai(prompt): | |
"""Generates a summary abstract using OpenAI's GPT model based on the provided prompt.""" | |
# Fetching the API key from environment variables for better security practice | |
headers = { | |
"Authorization": f"Bearer {api_key}", # Using the API key from environment variables | |
"Content-Type": "application/json" | |
} | |
data = { | |
"model": "gpt-3.5-turbo", | |
"messages": [ | |
{"role": "system", "content": "You are a helpful assistant."}, | |
{"role": "user", "content": prompt} | |
] | |
} | |
response = requests.post("https://api.openai.com/v1/chat/completions", headers=headers, data=json.dumps(data)) | |
if response.status_code == 200: | |
result = response.json() | |
content = result['choices'][0]['message']['content'] | |
return content.strip() | |
else: | |
raise Exception("Failed to generate a summary abstract from OpenAI.") | |
def generate_introduction_summary_with_openai(prompt): | |
headers = { | |
"Authorization": f"Bearer {api_key}", | |
"Content-Type": "application/json" | |
} | |
data = { | |
"model": "gpt-3.5-turbo", | |
"messages": [ | |
{"role": "system", "content": "You are a helpful assistant."}, | |
{"role": "user", "content": prompt} | |
] | |
} | |
response = requests.post("https://api.openai.com/v1/chat/completions", headers=headers, data=json.dumps(data)) | |
if response.status_code == 200: | |
result = response.json() | |
content = result['choices'][0]['message']['content'] | |
return content.strip() | |
else: | |
raise Exception("Failed to generate the introduction summary from OpenAI.") | |