Spaces:
Running
Running
from dotenv import load_dotenv | |
import os | |
import tempfile | |
from flask import Flask, render_template,send_file, send_from_directory, request, jsonify | |
import datetime | |
from agents import generate_research_questions_and_purpose_with_gpt, generate_abstract_with_openai, generate_summary_conclusion, generate_introduction_summary_with_openai | |
import json | |
from agents2 import generate_search_string_with_gpt | |
from agents3 import fetch_papers, save_papers_to_csv, search_elsevier | |
from agents4 import filter_papers_with_gpt_turbo, generate_response_gpt4_turbo | |
from flask_cors import CORS | |
import requests | |
from datetime import datetime | |
load_dotenv() | |
# x = datetime.datetime.now() | |
key = os.getenv("ELSEVIER_API_KEY") | |
app = Flask(__name__, static_folder='dist') | |
CORS(app) | |
def generate_search_string_route(): | |
data = request.json | |
objective = data.get('objective') | |
research_questions = data.get('research_questions', []) # Default to an empty list if not provided | |
if not objective or not research_questions: | |
return jsonify({"error": "Objective and research questions are required."}), 400 | |
search_string = generate_search_string_with_gpt(objective, research_questions) | |
return jsonify({"search_string": search_string}) | |
def generate_research_questions_and_purpose(): | |
print("request:", request.method) | |
data = request.json | |
objective = data.get('objective') | |
num_questions = int(data.get('num_questions', 1)) # Ensure num_questions is treated as an integer | |
# Validate input | |
if not objective: | |
return jsonify({"error": "Objective is required"}), 400 | |
if num_questions < 1: | |
return jsonify({"error": "Number of questions must be at least 1"}), 400 | |
questions_and_purposes = generate_research_questions_and_purpose_with_gpt(objective, num_questions) | |
print(questions_and_purposes) | |
return jsonify({"research_questions": questions_and_purposes}) | |
# Agent 4 | |
def filter_papers_route(): | |
data = request.json | |
search_string = data.get('search_string', '') | |
papers = data.get('papers', []) # Expecting only titles in papers | |
filtered_papers = filter_papers_with_gpt_turbo(search_string, papers) | |
return jsonify({"filtered_papers": filtered_papers}) | |
def answer_question(): | |
data = request.json | |
questions = data.get('questions') # This should now be a list of questions | |
papers_info = data.get('papers_info', []) | |
if not questions or not papers_info: | |
return jsonify({"error": "Both questions and papers information are required."}), 400 | |
answers = [] | |
for question in questions: | |
answer = generate_response_gpt4_turbo(question, papers_info) | |
answers.append({"question": question, "answer": answer}) | |
return jsonify({"answers": answers}) | |
def generate_summary_abstract(): | |
try: | |
data = request.json | |
research_questions = data.get('research_questions', 'No research questions provided.') | |
objective = data.get('objective', 'No objective provided.') | |
search_string = data.get('search_string', 'No search string provided.') | |
# Constructing the prompt for AI abstract generation | |
prompt = f"Based on the research questions '{research_questions}', the objective '{objective}', and the search string '{search_string}', generate a comprehensive abstract." | |
# Generate the abstract using OpenAI's GPT model | |
summary_abstract = generate_abstract_with_openai(prompt) | |
return jsonify({"summary_abstract": summary_abstract}) | |
except Exception as e: | |
return jsonify({"error": str(e)}), 500 | |
def generate_summary_conclusion_route(): | |
data = request.json | |
papers_info = data.get("papers_info", []) | |
try: | |
summary_conclusion = generate_summary_conclusion(papers_info) | |
return jsonify({"summary_conclusion": summary_conclusion}) | |
except Exception as e: | |
return jsonify({"error": str(e)}), 500 | |
def generate_introduction_summary(): | |
try: | |
data = request.json | |
total_papers = len(data.get("all_papers", [])) | |
filtered_papers_count = len(data.get("filtered_papers", [])) | |
research_questions = data.get("research_questions", []) | |
objective = data.get("objective", "") | |
search_string = data.get("search_string", "") | |
answers = data.get("answers", []) | |
# Constructing the introduction based on the provided data | |
prompt_intro = f"This document synthesizes findings from {total_papers} papers related to \"{search_string}\". Specifically, {filtered_papers_count} papers were thoroughly examined. The primary objective is {objective}." | |
prompt_questions = "\n\nResearch Questions:\n" + "\n".join([f"- {q}" for q in research_questions]) | |
prompt_answers = "\n\nSummary of Findings:\n" + "\n".join([f"- {ans['question']}: {ans['answer'][:250]}..." for ans in answers]) # Brief summary of answers | |
prompt = prompt_intro + prompt_questions + prompt_answers + "\n\nGenerate a coherent introduction and summary based on this compilation." | |
# Generating the introduction summary using OpenAI's GPT model | |
introduction_summary = generate_introduction_summary_with_openai(prompt) | |
return jsonify({"introduction_summary": introduction_summary}) | |
except Exception as e: | |
return jsonify({"error": str(e)}), 500 | |
def generate_summary_all_route(): | |
data = request.json | |
abstract_summary = data.get("abstract_summary", "") | |
intro_summary = data.get("intro_summary", "") # Corrected key to "intro_summary" | |
conclusion_summary = data.get("conclusion_summary", "") # Corrected key to "conclusion_summary" | |
try: | |
# Assuming you have a LaTeX template named 'latex_template.tex' in the 'templates' folder | |
print("inside") | |
latex_content = render_template( | |
"latex_template.tex", | |
abstract=abstract_summary, | |
introduction=intro_summary, | |
conclusion=conclusion_summary, | |
) | |
# Save the LaTeX content to a file in the same directory as this script | |
current_time = datetime.now().strftime('%Y%m%d%H%M%S') | |
milliseconds = datetime.now().microsecond // 1000 | |
file_path = os.path.join(os.path.dirname(__file__), f"{current_time}_{milliseconds}summary.tex") | |
print(file_path) | |
with open(file_path, "w", encoding="utf-8") as file: | |
file.write(latex_content) | |
with tempfile.NamedTemporaryFile(mode='w+', suffix='.tex', delete=False, encoding='utf-8') as temp_file: | |
temp_file.write(latex_content) | |
temp_file_path = temp_file.name | |
return send_file(temp_file_path, as_attachment=True, download_name='paper_summary.tex') | |
# return jsonify({"latex_file_path": file_path}) | |
except Exception as e: | |
return jsonify({"error": str(e)}), 500 | |
# # Route for serving static files (like manifest.json) | |
def index(): | |
return send_from_directory(app.static_folder, 'index.html') | |
def serve(path): | |
print("filename:", app.static_folder+ "/" + path) | |
if path != "" and os.path.exists(app.static_folder+ "/" + path): | |
return send_from_directory(app.static_folder, path) | |
else: | |
return send_from_directory(app.static_folder, 'index.html') | |
# return send_from_directory('templates/static/', filename) | |
# # Route for rendering the React app | |
# @app.route('/') | |
# def index(): | |
# print("calling") | |
# return render_template('index.html') | |
def search_papers(): | |
data = request.json | |
search_string = data.get('search_string', '') | |
start_year = data.get('start_year', '') | |
end_year = data.get('end_year', '') | |
limit = data.get('limit', 4) # Default limit to 10 papers if not specified | |
if not search_string or not start_year: | |
return jsonify({'error': 'Search string and start year are required.'}), 400 | |
results = search_elsevier(search_string, start_year, end_year, limit) | |
return jsonify(results) | |
# Running app | |
if __name__ == '__main__': | |
#app.run(debug=True) | |
app.run(host='0.0.0.0',port=5000) | |