|
import gradio as gr |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import torch |
|
|
|
|
|
model_name = "sshleifer/tiny-gpt2" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_name, |
|
torch_dtype=torch.float32, |
|
) |
|
|
|
|
|
def generate_text(prompt): |
|
inputs = tokenizer(prompt, return_tensors="pt") |
|
with torch.no_grad(): |
|
output = model.generate( |
|
**inputs, |
|
max_new_tokens=150, |
|
do_sample=True, |
|
top_p=0.9, |
|
temperature=0.7, |
|
pad_token_id=tokenizer.eos_token_id, |
|
) |
|
return tokenizer.decode(output[0], skip_special_tokens=True) |
|
|
|
|
|
gr.Interface( |
|
fn=generate_text, |
|
inputs=gr.Textbox(lines=5, label="Wprowadź tekst (prompt)"), |
|
outputs=gr.Textbox(label="Wygenerowany tekst"), |
|
title="sshleifer/tiny-gpt2 – Generowanie tekstu po polsku", |
|
description="Testowanie sshleifer/tiny-gpt2 -> Uruchamiany na CPU.", |
|
).launch() |
|
|