import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer import torch # Model i tokenizer model_name = "sshleifer/tiny-gpt2" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.float32, # ważne dla CPU ) # Funkcja do generowania odpowiedzi def generate_text(prompt): inputs = tokenizer(prompt, return_tensors="pt") with torch.no_grad(): output = model.generate( **inputs, max_new_tokens=150, do_sample=True, top_p=0.9, temperature=0.7, pad_token_id=tokenizer.eos_token_id, ) return tokenizer.decode(output[0], skip_special_tokens=True) # Interfejs Gradio gr.Interface( fn=generate_text, inputs=gr.Textbox(lines=5, label="Wprowadź tekst (prompt)"), outputs=gr.Textbox(label="Wygenerowany tekst"), title="sshleifer/tiny-gpt2 – Generowanie tekstu po polsku", description="Testowanie sshleifer/tiny-gpt2 -> Uruchamiany na CPU.", ).launch()