Spaces:
Sleeping
Sleeping
Leonardo Parente
commited on
Commit
·
3b7279c
1
Parent(s):
c774d4b
more requirements
Browse files- .gitignore +1 -0
- app.py +44 -4
- requirements.txt +8 -2
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
.streamlit/
|
app.py
CHANGED
@@ -1,17 +1,57 @@
|
|
1 |
import streamlit as st
|
|
|
2 |
from langchain.memory import ConversationBufferMemory
|
3 |
from langchain.memory.chat_message_histories import StreamlitChatMessageHistory
|
|
|
|
|
|
|
|
|
4 |
from langchain.llms.huggingface_pipeline import HuggingFacePipeline
|
|
|
5 |
|
6 |
msgs = StreamlitChatMessageHistory()
|
7 |
memory = ConversationBufferMemory(memory_key="history", chat_memory=msgs)
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
)
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
st.title("🪩🤖")
|
16 |
|
17 |
if len(msgs.messages) == 0:
|
|
|
1 |
import streamlit as st
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
3 |
from langchain.memory import ConversationBufferMemory
|
4 |
from langchain.memory.chat_message_histories import StreamlitChatMessageHistory
|
5 |
+
from langchain.chains import LLMChain
|
6 |
+
from langchain.prompts import PromptTemplate
|
7 |
+
from langchain.embeddings import VoyageEmbeddings
|
8 |
+
from langchain.vectorstores import SupabaseVectorStore
|
9 |
from langchain.llms.huggingface_pipeline import HuggingFacePipeline
|
10 |
+
from st_supabase_connection import SupabaseConnection
|
11 |
|
12 |
msgs = StreamlitChatMessageHistory()
|
13 |
memory = ConversationBufferMemory(memory_key="history", chat_memory=msgs)
|
14 |
|
15 |
+
supabase_client = st.connection(
|
16 |
+
name="orbgpt",
|
17 |
+
type=SupabaseConnection,
|
18 |
+
ttl=None,
|
19 |
)
|
20 |
|
21 |
+
embeddings = VoyageEmbeddings(model="voyage-01")
|
22 |
+
vector_store = SupabaseVectorStore(
|
23 |
+
embedding=embeddings,
|
24 |
+
client=supabase_client,
|
25 |
+
table_name="documents",
|
26 |
+
query_name="match_documents",
|
27 |
+
)
|
28 |
+
|
29 |
+
|
30 |
+
model_path = "01-ai/Yi-6B-Chat-8bits"
|
31 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
|
32 |
+
model = AutoModelForCausalLM.from_pretrained(
|
33 |
+
model_path, device_map="auto", torch_dtype="auto"
|
34 |
+
).eval()
|
35 |
+
pipe = pipeline(
|
36 |
+
"text-generation",
|
37 |
+
model=model,
|
38 |
+
tokenizer=tokenizer,
|
39 |
+
max_new_tokens=10,
|
40 |
+
use_fast=False,
|
41 |
+
)
|
42 |
+
hf = HuggingFacePipeline(pipeline=pipe)
|
43 |
+
|
44 |
+
template = """Question: {question}
|
45 |
+
|
46 |
+
Answer: Let's think step by step."""
|
47 |
+
prompt = PromptTemplate.from_template(template)
|
48 |
+
|
49 |
+
chain = prompt | hf
|
50 |
+
|
51 |
+
question = "What is electroencephalography?"
|
52 |
+
|
53 |
+
st.text(chain.invoke({"question": question}))
|
54 |
+
|
55 |
st.title("🪩🤖")
|
56 |
|
57 |
if len(msgs.messages) == 0:
|
requirements.txt
CHANGED
@@ -1,4 +1,10 @@
|
|
1 |
streamlit
|
2 |
-
torch
|
3 |
transformers
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
streamlit
|
|
|
2 |
transformers
|
3 |
+
torch
|
4 |
+
sentencepiece
|
5 |
+
accelerate
|
6 |
+
auto-gptq
|
7 |
+
optimum
|
8 |
+
langchain
|
9 |
+
supabase
|
10 |
+
st-supabase-connection
|