import gradio as gr from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns import pandas as pd from apscheduler.schedulers.background import BackgroundScheduler from huggingface_hub import snapshot_download from src.about import ( INTRODUCTION_TEXT, LLM_BENCHMARKS_TEXT, TITLE, ) from src.display.css_html_js import custom_css from src.display.utils import ( AutoEvalColumn, fields, ) from src.envs import API, EVAL_RESULTS_PATH, REPO_ID, RESULTS_REPO, TOKEN def restart_space(): API.restart_space(repo_id=REPO_ID) ### Space initialisation try: print(EVAL_RESULTS_PATH) snapshot_download( repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN ) except Exception: restart_space() LEADERBOARD_DF = pd.read_csv(f"{EVAL_RESULTS_PATH}/results.csv") # multiply each column by 100, except first column for col in LEADERBOARD_DF.columns[1:]: LEADERBOARD_DF[col] = LEADERBOARD_DF[col] * 100 # add average column LEADERBOARD_DF["Average"] = LEADERBOARD_DF.mean(axis=1) # # move average to the front LEADERBOARD_DF = LEADERBOARD_DF[["model", "Average"] + [col for col in LEADERBOARD_DF.columns if col not in ["model", "Average"]]] # round to nearest tenth LEADERBOARD_DF = LEADERBOARD_DF.round(1) # sort by average LEADERBOARD_DF = LEADERBOARD_DF.sort_values(by="Average", ascending=False) def init_leaderboard(dataframe): if dataframe is None or dataframe.empty: raise ValueError("Leaderboard DataFrame is empty or None.") return Leaderboard( value=dataframe, datatype=[c.type for c in fields(AutoEvalColumn)], select_columns=SelectColumns( default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default], cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden], label="Select Columns to Display:", ), search_columns=[AutoEvalColumn.model.name], hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden], bool_checkboxgroup_label="Hide models", interactive=False, ) demo = gr.Blocks(css=custom_css) with demo: gr.HTML(TITLE) gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") with gr.Tabs(elem_classes="tab-buttons") as tabs: with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0): leaderboard = init_leaderboard(LEADERBOARD_DF) with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2): gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") scheduler = BackgroundScheduler() scheduler.add_job(restart_space, "interval", seconds=1800) scheduler.start() demo.queue(default_concurrency_limit=40).launch()