Spaces:
Running
on
Zero
Running
on
Zero
#!/usr/bin/env python | |
# -*- encoding: utf-8 -*- | |
""" | |
@Author : Peike Li | |
@Contact : [email protected] | |
@File : kl_loss.py | |
@Time : 7/23/19 4:02 PM | |
@Desc : | |
@License : This source code is licensed under the license found in the | |
LICENSE file in the root directory of this source tree. | |
""" | |
import torch | |
import torch.nn.functional as F | |
from torch import nn | |
def flatten_probas(input, target, labels, ignore=255): | |
""" | |
Flattens predictions in the batch. | |
""" | |
B, C, H, W = input.size() | |
input = input.permute(0, 2, 3, 1).contiguous().view(-1, C) # B * H * W, C = P, C | |
target = target.permute(0, 2, 3, 1).contiguous().view(-1, C) # B * H * W, C = P, C | |
labels = labels.view(-1) | |
if ignore is None: | |
return input, target | |
valid = (labels != ignore) | |
vinput = input[valid.nonzero().squeeze()] | |
vtarget = target[valid.nonzero().squeeze()] | |
return vinput, vtarget | |
class KLDivergenceLoss(nn.Module): | |
def __init__(self, ignore_index=255, T=1): | |
super(KLDivergenceLoss, self).__init__() | |
self.ignore_index=ignore_index | |
self.T = T | |
def forward(self, input, target, label): | |
log_input_prob = F.log_softmax(input / self.T, dim=1) | |
target_porb = F.softmax(target / self.T, dim=1) | |
loss = F.kl_div(*flatten_probas(log_input_prob, target_porb, label, ignore=self.ignore_index)) | |
return self.T*self.T*loss # balanced | |