from pathlib import Path import sys from PIL import Image from utils_ootd import get_mask_location PROJECT_ROOT = Path(__file__).absolute().parents[1].absolute() sys.path.insert(0, str(PROJECT_ROOT)) from preprocess.openpose.run_openpose import OpenPose from preprocess.humanparsing.run_parsing import Parsing from ootd.inference_ootd_hd import OOTDiffusionHD from ootd.inference_ootd_dc import OOTDiffusionDC import argparse parser = argparse.ArgumentParser(description='run ootd') parser.add_argument('--gpu_id', '-g', type=int, default=0, required=False) parser.add_argument('--model_path', type=str, default="", required=True) parser.add_argument('--cloth_path', type=str, default="", required=True) parser.add_argument('--model_type', type=str, default="hd", required=False) parser.add_argument('--category', '-c', type=int, default=0, required=False) parser.add_argument('--scale', type=float, default=2.0, required=False) parser.add_argument('--step', type=int, default=20, required=False) parser.add_argument('--sample', type=int, default=4, required=False) parser.add_argument('--seed', type=int, default=-1, required=False) args = parser.parse_args() openpose_model = OpenPose(args.gpu_id) parsing_model = Parsing(args.gpu_id) category_dict = ['upperbody', 'lowerbody', 'dress'] category_dict_utils = ['upper_body', 'lower_body', 'dresses'] model_type = args.model_type # "hd" or "dc" category = args.category # 0:upperbody; 1:lowerbody; 2:dress cloth_path = args.cloth_path model_path = args.model_path image_scale = args.scale n_steps = args.step n_samples = args.sample seed = args.seed if model_type == "hd": model = OOTDiffusionHD(args.gpu_id) elif model_type == "dc": model = OOTDiffusionDC(args.gpu_id) else: raise ValueError("model_type must be \'hd\' or \'dc\'!") if __name__ == '__main__': if model_type == 'hd' and category != 0: raise ValueError("model_type \'hd\' requires category == 0 (upperbody)!") cloth_img = Image.open(cloth_path).resize((768, 1024)) model_img = Image.open(model_path).resize((768, 1024)) keypoints = openpose_model(model_img.resize((384, 512))) model_parse, _ = parsing_model(model_img.resize((384, 512))) mask, mask_gray = get_mask_location(model_type, category_dict_utils[category], model_parse, keypoints) mask = mask.resize((768, 1024), Image.NEAREST) mask_gray = mask_gray.resize((768, 1024), Image.NEAREST) masked_vton_img = Image.composite(mask_gray, model_img, mask) masked_vton_img.save('./images_output/mask.jpg') images = model( model_type=model_type, category=category_dict[category], image_garm=cloth_img, image_vton=masked_vton_img, mask=mask, image_ori=model_img, num_samples=n_samples, num_steps=n_steps, image_scale=image_scale, seed=seed, ) image_idx = 0 for image in images: image.save('./images_output/out_' + model_type + '_' + str(image_idx) + '.png') image_idx += 1