Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -4,18 +4,13 @@ import warnings
|
|
4 |
import os
|
5 |
import gradio as gr
|
6 |
import numpy as np
|
|
|
7 |
import torch
|
8 |
from diffusers import FluxControlNetModel
|
9 |
from diffusers.pipelines import FluxControlNetPipeline
|
10 |
from gradio_imageslider import ImageSlider
|
11 |
from PIL import Image
|
12 |
from huggingface_hub import snapshot_download
|
13 |
-
import gc
|
14 |
-
|
15 |
-
# Clear memory
|
16 |
-
gc.collect()
|
17 |
-
if torch.cuda.is_available():
|
18 |
-
torch.cuda.empty_cache()
|
19 |
|
20 |
css = """
|
21 |
#col-container {
|
@@ -24,68 +19,69 @@ css = """
|
|
24 |
}
|
25 |
"""
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
30 |
|
31 |
-
huggingface_token = os.getenv("HF_TOKEN")
|
32 |
|
33 |
-
|
34 |
-
model_config = {
|
35 |
-
"low_cpu_mem_usage": True,
|
36 |
-
"torch_dtype": dtype,
|
37 |
-
"use_safetensors": False, # Disabled safetensors
|
38 |
-
}
|
39 |
|
40 |
model_path = snapshot_download(
|
41 |
-
repo_id="black-forest-labs/FLUX.1-dev",
|
42 |
-
repo_type="model",
|
43 |
-
ignore_patterns=["*.md", "*..gitattributes"
|
44 |
-
local_dir="FLUX.1-dev",
|
45 |
-
token=huggingface_token,
|
46 |
)
|
47 |
|
48 |
-
# Load models with modified configuration
|
49 |
-
try:
|
50 |
-
controlnet = FluxControlNetModel.from_pretrained(
|
51 |
-
"jasperai/Flux.1-dev-Controlnet-Upscaler",
|
52 |
-
**model_config
|
53 |
-
)
|
54 |
-
controlnet.to(device)
|
55 |
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
|
|
|
|
62 |
|
63 |
-
|
64 |
-
|
65 |
-
raise
|
66 |
|
67 |
-
# Enable optimizations
|
68 |
-
pipe.enable_attention_slicing(1)
|
69 |
-
pipe.enable_vae_slicing()
|
70 |
|
71 |
-
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
-
|
75 |
-
input_image = input_image.convert('RGB')
|
76 |
-
|
77 |
w, h = input_image.size
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
input_image = input_image.resize((new_w, new_h), Image.LANCZOS)
|
83 |
-
|
84 |
-
w = new_w - new_w % 8
|
85 |
-
h = new_h - new_h % 8
|
86 |
-
|
87 |
-
return input_image.resize((w, h)), w, h
|
88 |
|
|
|
|
|
89 |
def infer(
|
90 |
seed,
|
91 |
randomize_seed,
|
@@ -95,38 +91,42 @@ def infer(
|
|
95 |
controlnet_conditioning_scale,
|
96 |
progress=gr.Progress(track_tqdm=True),
|
97 |
):
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
|
|
|
|
|
|
|
|
130 |
|
131 |
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
|
132 |
with gr.Row():
|
|
|
4 |
import os
|
5 |
import gradio as gr
|
6 |
import numpy as np
|
7 |
+
import spaces
|
8 |
import torch
|
9 |
from diffusers import FluxControlNetModel
|
10 |
from diffusers.pipelines import FluxControlNetPipeline
|
11 |
from gradio_imageslider import ImageSlider
|
12 |
from PIL import Image
|
13 |
from huggingface_hub import snapshot_download
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
css = """
|
16 |
#col-container {
|
|
|
19 |
}
|
20 |
"""
|
21 |
|
22 |
+
if torch.cuda.is_available():
|
23 |
+
power_device = "GPU"
|
24 |
+
device = "cuda"
|
25 |
+
else:
|
26 |
+
power_device = "CPU"
|
27 |
+
device = "cpu"
|
28 |
|
|
|
29 |
|
30 |
+
huggingface_token = os.getenv("HUGGINFACE_TOKEN")
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
model_path = snapshot_download(
|
33 |
+
repo_id="black-forest-labs/FLUX.1-dev",
|
34 |
+
repo_type="model",
|
35 |
+
ignore_patterns=["*.md", "*..gitattributes"],
|
36 |
+
local_dir="FLUX.1-dev",
|
37 |
+
token=huggingface_token, # type a new token-id.
|
38 |
)
|
39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
+
# Load pipeline
|
42 |
+
controlnet = FluxControlNetModel.from_pretrained(
|
43 |
+
"jasperai/Flux.1-dev-Controlnet-Upscaler", torch_dtype=torch.bfloat16
|
44 |
+
).to(device)
|
45 |
+
pipe = FluxControlNetPipeline.from_pretrained(
|
46 |
+
model_path, controlnet=controlnet, torch_dtype=torch.bfloat16
|
47 |
+
)
|
48 |
+
pipe.to(device)
|
49 |
|
50 |
+
MAX_SEED = 1000000
|
51 |
+
MAX_PIXEL_BUDGET = 1024 * 1024
|
|
|
52 |
|
|
|
|
|
|
|
53 |
|
54 |
+
def process_input(input_image, upscale_factor, **kwargs):
|
55 |
+
w, h = input_image.size
|
56 |
+
w_original, h_original = w, h
|
57 |
+
aspect_ratio = w / h
|
58 |
+
|
59 |
+
was_resized = False
|
60 |
+
|
61 |
+
if w * h * upscale_factor**2 > MAX_PIXEL_BUDGET:
|
62 |
+
warnings.warn(
|
63 |
+
f"Requested output image is too large ({w * upscale_factor}x{h * upscale_factor}). Resizing to ({int(aspect_ratio * MAX_PIXEL_BUDGET ** 0.5 // upscale_factor), int(MAX_PIXEL_BUDGET ** 0.5 // aspect_ratio // upscale_factor)}) pixels."
|
64 |
+
)
|
65 |
+
gr.Info(
|
66 |
+
f"Requested output image is too large ({w * upscale_factor}x{h * upscale_factor}). Resizing input to ({int(aspect_ratio * MAX_PIXEL_BUDGET ** 0.5 // upscale_factor), int(MAX_PIXEL_BUDGET ** 0.5 // aspect_ratio // upscale_factor)}) pixels budget."
|
67 |
+
)
|
68 |
+
input_image = input_image.resize(
|
69 |
+
(
|
70 |
+
int(aspect_ratio * MAX_PIXEL_BUDGET**0.5 // upscale_factor),
|
71 |
+
int(MAX_PIXEL_BUDGET**0.5 // aspect_ratio // upscale_factor),
|
72 |
+
)
|
73 |
+
)
|
74 |
+
was_resized = True
|
75 |
|
76 |
+
# resize to multiple of 8
|
|
|
|
|
77 |
w, h = input_image.size
|
78 |
+
w = w - w % 8
|
79 |
+
h = h - h % 8
|
80 |
+
|
81 |
+
return input_image.resize((w, h)), w_original, h_original, was_resized
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
+
|
84 |
+
@spaces.GPU#(duration=42)
|
85 |
def infer(
|
86 |
seed,
|
87 |
randomize_seed,
|
|
|
91 |
controlnet_conditioning_scale,
|
92 |
progress=gr.Progress(track_tqdm=True),
|
93 |
):
|
94 |
+
if randomize_seed:
|
95 |
+
seed = random.randint(0, MAX_SEED)
|
96 |
+
true_input_image = input_image
|
97 |
+
input_image, w_original, h_original, was_resized = process_input(
|
98 |
+
input_image, upscale_factor
|
99 |
+
)
|
100 |
+
|
101 |
+
# rescale with upscale factor
|
102 |
+
w, h = input_image.size
|
103 |
+
control_image = input_image.resize((w * upscale_factor, h * upscale_factor))
|
104 |
+
|
105 |
+
generator = torch.Generator().manual_seed(seed)
|
106 |
+
|
107 |
+
gr.Info("Upscaling image...")
|
108 |
+
image = pipe(
|
109 |
+
prompt="",
|
110 |
+
control_image=control_image,
|
111 |
+
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
112 |
+
num_inference_steps=num_inference_steps,
|
113 |
+
guidance_scale=3.5,
|
114 |
+
height=control_image.size[1],
|
115 |
+
width=control_image.size[0],
|
116 |
+
generator=generator,
|
117 |
+
).images[0]
|
118 |
+
|
119 |
+
if was_resized:
|
120 |
+
gr.Info(
|
121 |
+
f"Resizing output image to targeted {w_original * upscale_factor}x{h_original * upscale_factor} size."
|
122 |
+
)
|
123 |
+
|
124 |
+
# resize to target desired size
|
125 |
+
image = image.resize((w_original * upscale_factor, h_original * upscale_factor))
|
126 |
+
image.save("output.jpg")
|
127 |
+
# convert to numpy
|
128 |
+
return [true_input_image, image, seed]
|
129 |
+
|
130 |
|
131 |
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
|
132 |
with gr.Row():
|