Spaces:
Runtime error
Runtime error
Folle, Lukas
commited on
Commit
•
14e27af
1
Parent(s):
64e2ba8
Added first working version of application, NAPSI is dummy.
Browse files- .gitignore +2 -0
- DummyModel.py +1 -1
- app.py +30 -20
- assets/hand_example.jpg +0 -0
- backend.py +34 -0
- requirements.txt +5 -2
.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
.vscode/launch.json
|
2 |
+
*.pyc
|
DummyModel.py
CHANGED
@@ -7,7 +7,7 @@ class DummyModel(torch.nn.Module):
|
|
7 |
super().__init__()
|
8 |
|
9 |
def forward(self, x):
|
10 |
-
return
|
11 |
|
12 |
def __call__(self, x):
|
13 |
return self.forward(x)
|
|
|
7 |
super().__init__()
|
8 |
|
9 |
def forward(self, x):
|
10 |
+
return torch.softmax(torch.rand(5), 0)
|
11 |
|
12 |
def __call__(self, x):
|
13 |
return self.forward(x)
|
app.py
CHANGED
@@ -1,26 +1,36 @@
|
|
1 |
-
import torch
|
2 |
-
import os
|
3 |
-
|
4 |
import gradio as gr
|
5 |
-
from huggingface_hub import hf_hub_download
|
6 |
|
7 |
-
from
|
|
|
|
|
|
|
8 |
|
9 |
|
10 |
-
|
11 |
-
use_auth_token=os.environ['DeepNAPSIModel'])
|
12 |
-
model = DummyModel()
|
13 |
-
model.load_state_dict(torch.load(file_path))
|
14 |
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
-
|
19 |
-
predict,
|
20 |
-
title="DeepNAPSI Application",
|
21 |
-
inputs=gr.Image(),
|
22 |
-
outputs=gr.Number(label="DeepNAPSI prediction"),
|
23 |
-
description="",
|
24 |
-
examples=["assets/hand_example.jpg"],
|
25 |
-
)
|
26 |
-
iface.launch()
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
2 |
|
3 |
+
from backend import Infer
|
4 |
+
|
5 |
+
|
6 |
+
DEBUG = True
|
7 |
|
8 |
|
9 |
+
infer = Infer(DEBUG)
|
|
|
|
|
|
|
10 |
|
11 |
+
with gr.Blocks(analytics_enabled=False, title="DeepNAPSI Prediction") as demo:
|
12 |
+
with gr.Column():
|
13 |
+
gr.Markdown("Upload an image of the hand and click **Predict NAPSI** to see the output.")
|
14 |
+
with gr.Column():
|
15 |
+
image_input = gr.Image()
|
16 |
+
image_button = gr.Button("Predict NAPSI")
|
17 |
+
outputs = []
|
18 |
+
with gr.Row():
|
19 |
+
with gr.Column():
|
20 |
+
outputs.append(gr.Image())
|
21 |
+
outputs.append(gr.Number(label="DeepNAPSI Thumb"))
|
22 |
+
with gr.Column():
|
23 |
+
outputs.append(gr.Image())
|
24 |
+
outputs.append(gr.Number(label="DeepNAPSI Index"))
|
25 |
+
with gr.Column():
|
26 |
+
outputs.append(gr.Image())
|
27 |
+
outputs.append(gr.Number(label="DeepNAPSI Middle"))
|
28 |
+
with gr.Column():
|
29 |
+
outputs.append(gr.Image())
|
30 |
+
outputs.append(gr.Number(label="DeepNAPSI Ring"))
|
31 |
+
with gr.Column():
|
32 |
+
outputs.append(gr.Image())
|
33 |
+
outputs.append(gr.Number(label="DeepNAPSI Pinky"))
|
34 |
+
image_button.click(infer.predict, inputs=image_input, outputs=outputs)
|
35 |
|
36 |
+
demo.launch(share=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
assets/hand_example.jpg
DELETED
Binary file (867 kB)
|
|
backend.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import cv2
|
3 |
+
import numpy as np
|
4 |
+
from huggingface_hub import hf_hub_download
|
5 |
+
from nail_detection.main import get_nails
|
6 |
+
|
7 |
+
from DummyModel import DummyModel
|
8 |
+
|
9 |
+
|
10 |
+
def load_model(DEBUG):
|
11 |
+
model = DummyModel()
|
12 |
+
if not DEBUG:
|
13 |
+
file_path = hf_hub_download("lfolle/DeepNAPSIModel", "dummy_model.pth",
|
14 |
+
use_auth_token=os.environ['DeepNAPSIModel'])
|
15 |
+
model.load_state_dict(torch.load(file_path))
|
16 |
+
return model
|
17 |
+
|
18 |
+
|
19 |
+
class Infer():
|
20 |
+
def __init__(self, DEBUG):
|
21 |
+
self.model = load_model(DEBUG)
|
22 |
+
|
23 |
+
def predict(self, data):
|
24 |
+
nails = get_nails(cv2.cvtColor(data, cv2.COLOR_RGB2BGR))
|
25 |
+
predictions = []
|
26 |
+
if nails is None:
|
27 |
+
for _ in range(5):
|
28 |
+
predictions.append(np.zeros((64, 64, 3)))
|
29 |
+
predictions.append(-1)
|
30 |
+
else:
|
31 |
+
for nail in nails:
|
32 |
+
predictions.append(nail)
|
33 |
+
predictions.append(int(torch.argmax(self.model(nail))))
|
34 |
+
return predictions
|
requirements.txt
CHANGED
@@ -1,2 +1,5 @@
|
|
1 |
-
|
2 |
-
numpy
|
|
|
|
|
|
|
|
1 |
+
cvs2
|
2 |
+
numpy
|
3 |
+
gradio
|
4 |
+
huggingface_hub
|
5 |
+
torch
|