import torch import os import gradio as gr from huggingface_hub import hf_hub_download from DummyModel import DummyModel file_path = hf_hub_download("lfolle/DeepNAPSIModel", "dummy_model.pth", use_auth_token=os.environ['DeepNAPSIModel']) model = DummyModel() model.load_state_dict(torch.load(file_path)) def predict(data): return model(data) iface = gr.Interface( predict, title="DeepNAPSI Application", inputs=gr.Image(), outputs=gr.Number(label="DeepNAPSI prediction"), description="", examples=["assets/hand_example.jpg"], ) iface.launch()