import os import pip import gradio as gr from PIL import Image from backend import Infer DEBUG = False infer = Infer(DEBUG) example_image_path = ["assets/example_1.jpg", "assets/example_2.jpg", "assets/example_3.jpg"] outputs = [ gr.Image(label="Thumb"), gr.Number(label="DeepNAPSI Thumb", precision=0), gr.Image(label="Index"), gr.Number(label="DeepNAPSI Index", precision=0), gr.Image(label="Middle"), gr.Number(label="DeepNAPSI Middle", precision=0), gr.Image(label="Ring"), gr.Number(label="DeepNAPSI Ring", precision=0), gr.Image(label="Pinky"), gr.Number(label="DeepNAPSI Pinky", precision=0), gr.Number(label="DeepNAPSI Sum", precision=0), ] with gr.Blocks(analytics_enabled=False, title="DeepNAPSI") as demo: with gr.Column(): gr.Markdown("## Welcome to the DeepNAPSI application!") gr.Markdown("Upload an image of the one hand and click **Predict NAPSI** to see the output.\n" \ gr.Markdown("*Note*: Make sure there are no identifying information present in the image. The prediction can take up to 1 minute." ) gr.Markdown("*Note*: This is not a medical product and cannot be used for a patient diagnosis in any way.") with gr.Column(): with gr.Row(): with gr.Column(): with gr.Row(): image_input = gr.Image() example_images = gr.Examples(example_image_path, image_input, outputs, fn=infer.predict, cache_examples=True) with gr.Row(): image_button = gr.Button("Predict NAPSI") with gr.Row(): with gr.Column(): outputs[0].render() outputs[1].render() with gr.Column(): outputs[2].render() outputs[3].render() with gr.Column(): outputs[4].render() outputs[5].render() with gr.Column(): outputs[6].render() outputs[7].render() with gr.Column(): outputs[8].render() outputs[9].render() outputs[10].render() image_button.click(infer.predict, inputs=image_input, outputs=outputs) demo.launch(share=True if DEBUG else False, enable_queue=True, favicon_path="assets/favicon-32x32.png")