File size: 647 Bytes
1037a30 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 |
import gradio as gr
from transformers import pipeline
pipe = pipeline(model="lfurman/whisper-tiny-en")
def transcribe(audio):
text = pipe(audio)["text"]
return text
with gr.Blocks() as demo:
gr.Markdown("# Whisper Tiny FreeSound Audio Captioning")
gr.Markdown("Upload an audio file for captioning using a fine-tuned Whisper tiny model.")
with gr.Row():
audio_input = gr.Audio(sources="upload", type="filepath")
text_output = gr.Textbox(label="Audio Caption")
btn = gr.Button("Transcribe")
btn.click(fn=transcribe, inputs=audio_input, outputs=text_output)
if __name__ == "__main__":
demo.launch() |