import gradio as gr from transformers import pipeline pipe = pipeline(model="lfurman/whisper-tiny-en") def transcribe(audio): text = pipe(audio)["text"] return text with gr.Blocks() as demo: gr.Markdown("# Whisper Tiny FreeSound Audio Captioning") gr.Markdown("Upload an audio file for captioning using a fine-tuned Whisper tiny model.") with gr.Row(): audio_input = gr.Audio(sources="upload", type="filepath") text_output = gr.Textbox(label="Audio Caption") btn = gr.Button("Transcribe") btn.click(fn=transcribe, inputs=audio_input, outputs=text_output) if __name__ == "__main__": demo.launch()