File size: 31,067 Bytes
7eed258 184f807 f721373 7eed258 184f807 905f549 f721373 7eed258 905f549 f721373 7eed258 f721373 7eed258 905f549 f721373 7eed258 184f807 7eed258 0b712fa 7eed258 2579f7c 7eed258 59705bf 0b712fa 2579f7c 0b712fa 7eed258 905f549 7eed258 2579f7c 7eed258 0b712fa 2579f7c 0b712fa 7eed258 0b712fa 7eed258 0b712fa 7eed258 0b712fa 7eed258 0b712fa 7eed258 0b712fa 2579f7c 7eed258 2579f7c 7eed258 2579f7c 7eed258 184f807 7eed258 905f549 f721373 905f549 184f807 905f549 184f807 905f549 e417e74 184f807 905f549 e417e74 905f549 184f807 905f549 e417e74 905f549 2579f7c 905f549 2579f7c 905f549 e417e74 905f549 e417e74 905f549 2579f7c 905f549 2579f7c 905f549 e417e74 184f807 f721373 905f549 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 |
import ast
import glob
import time
from itertools import islice
from functools import partial
from textwrap import dedent
from typing import Optional, Type
import gradio as gr
import nltk
import pandas as pd
from datatrove.data import Document
from datatrove.executor.local import LocalPipelineExecutor
from datatrove.pipeline.extractors import Trafilatura
from datatrove.pipeline.filters.base_filter import BaseFilter
from datatrove.pipeline.filters import (
C4QualityFilter,
FineWebQualityFilter,
GopherQualityFilter,
GopherRepetitionFilter,
LanguageFilter,
URLFilter,
)
from datatrove.pipeline.formatters import PIIFormatter
from datatrove.pipeline.readers import JsonlReader, WarcReader
from datatrove.utils.typeshelper import Languages
nltk.download('punkt_tab')
DUMP_TO_PROCESS = "CC-MAIN-2023-50"
TIMEOUT = 600
steps = [
URLFilter,
Trafilatura,
LanguageFilter,
GopherRepetitionFilter,
GopherQualityFilter,
C4QualityFilter,
FineWebQualityFilter,
PIIFormatter
]
DEFAULT_CODE = dedent(
"""
```python
from datatrove.executor.local import LocalPipelineExecutor
from datatrove.pipeline.extractors import Trafilatura
from datatrove.pipeline.filters import (
C4QualityFilter,
FineWebQualityFilter,
GopherQualityFilter,
GopherRepetitionFilter,
LanguageFilter,
URLFilter,
)
from datatrove.pipeline.formatters import PIIFormatter
from datatrove.pipeline.readers import WarcReader
"""
).strip() + (
"\n\n"
"pipeline_executor = LocalPipelineExecutor(\n"
" pipeline=[\n"
f' WarcReader("s3://commoncrawl/crawl-data/{DUMP_TO_PROCESS}/segments", glob_pattern="*/warc/*"),\n'
) + ",\n".join([
" " + step.__name__ + "()" for step in steps
]) + (
"\n"
" ]\n"
")"
) + dedent(
"""
pipeline_executor.run()
```
"""
)
make_gallery_image_buttons_js = """
function load() {
let buttons = document.getElementsByClassName("block-button");
Array.from(document.getElementById("pipeline-gallery").getElementsByClassName("thumbnail-item")).map(
(b, i) => b.addEventListener("click", () => buttons[i].click())
)
}
"""
css = """
tr td {
border-top: 1px solid black;
}
.grid-container {
gap: 0;
grid-template-rows: auto;
grid-auto-rows: auto;
}
.thumbnail-item {
aspect-ratio: auto;
height: min-content;
}
.grid-wrap {
min-height: 0;
}
.table-wrap {
min-height: 600px;
max-height: 600px;
}
.scollabe_tabs .tab-wrapper .tab-container {
overflow: scroll;
}
"""
blocks = sorted(glob.glob("images/*.png"))
def prepare_as_list_or_none(text: str) -> Optional[list[str]]:
return ([x.strip() for x in text.split(",") if x.strip()] or None) if text else None
def non_empty_list_or_none(input_list: list[str]) -> Optional[list[str]]:
return input_list or None
with gr.Blocks(css=css, js=make_gallery_image_buttons_js) as demo:
state = gr.State({"selected_block": None})
gr.Markdown("# Common Crawl Pipeline Creator")
with gr.Row():
with gr.Column(min_width=640):
gallery = gr.Gallery(
blocks,
columns=4,
rows=2,
label="Select step to edit",
object_fit="scale-down",
show_share_button=False,
show_download_button=False,
show_fullscreen_button=False,
elem_id="pipeline-gallery",
allow_preview=False,
)
gallery_image_buttons = [gr.Button(visible=False, elem_classes="block-button") for _ in blocks] # hack to simulate each image galery as a button, see `make_gallery_image_buttons_js``
view_pipeline_results_button = gr.Button("Run Pipeline & Stream Results", variant="primary", scale=4)
blocks_uis = []
with gr.Column(visible=False) as col:
blocks_uis.append(col)
gr.Markdown("## 1. URL Filtering \n\nPerforms filtering based on samples urls.")
with gr.Group():
url_filtering_checkbox = gr.Checkbox(True, label="Enable")
with gr.Accordion("Parameters", open=True) as acc:
use_integrated_lists_checkbox = gr.Checkbox(True, label="use_integrated_lists", info="use the datatrove integrated lists of banned urls and words")
with gr.Row():
with gr.Column():
extra_domain_textbox = gr.Textbox("", label="extra_domains", info="remove if the domain is present in `extra_domains`")
extra_domain_textbox.prepare_parameter = prepare_as_list_or_none
extra_urls_textbox = gr.Textbox("", label="extra_urls", info="remove if the full url is present on `extra_urls`")
extra_urls_textbox.prepare_parameter = prepare_as_list_or_none
with gr.Column():
banned_words_textbox = gr.Textbox("", label="banned_words", info="remove if any word from `banned_words` is in the url")
banned_words_textbox.prepare_parameter = prepare_as_list_or_none
banned_subwords_textbox = gr.Textbox("", label="banned_subwords", info="remove if any word from `banned_subwords` is a substring of the url")
banned_subwords_textbox.prepare_parameter = prepare_as_list_or_none
with gr.Column():
soft_banned_words_textbox = gr.Textbox("", label="soft_banned_words", info="remove if there are at least `soft_word_threshold` words from `soft_banned_words` in the url")
soft_banned_words_textbox.prepare_parameter = prepare_as_list_or_none
soft_word_threshold_slider = gr.Slider(0, 5, value=2, step=1, label="soft_word_threshold", info="remove if there are at least `soft_word_threshold` words from `soft_banned_words` in the url")
url_filtering_checkbox.change(lambda visible: gr.Accordion(visible=visible), inputs=url_filtering_checkbox, outputs=acc)
url_filtering_parameters_components = [use_integrated_lists_checkbox, extra_domain_textbox, extra_urls_textbox, banned_words_textbox, banned_subwords_textbox, soft_banned_words_textbox, soft_word_threshold_slider]
with gr.Column(visible=False) as col:
blocks_uis.append(col)
gr.Markdown("## 2. Text Extraction \n\nUses the [Trafilatura](https://trafilatura.readthedocs.io) extractor.")
with gr.Group():
text_extraction_checkbox = gr.Checkbox(True, label="Enable")
with gr.Accordion("Parameters", open=True) as acc:
with gr.Row():
favour_precision_checkbox = gr.Checkbox(True, label="favour_precision", info="prefer less text but correct extraction")
timeout_slider = gr.Slider(0.05, 0.5, value=0.1, step=0.05, label="timeout", info="the timeout for extraction, per document, in seconds")
deduplicate_checkbox = gr.Checkbox(True, label="deduplicate", info="trafilatura's deduplicate option")
text_extraction_checkbox.change(lambda visible: gr.Accordion(visible=visible), inputs=text_extraction_checkbox, outputs=acc)
text_extraction_parameters_components = [favour_precision_checkbox, timeout_slider, deduplicate_checkbox]
with gr.Column(visible=False) as col:
blocks_uis.append(col)
gr.Markdown("## 3. Language Filtering \n\nUses the [fastext](https://fasttext.cc/docs/en/language-identification.html) language identification models.")
with gr.Group():
language_filtering_checkbox = gr.Checkbox(True, label="Enable")
with gr.Accordion("Parameters", open=True) as acc:
with gr.Row():
languages_textbox = gr.Dropdown(sorted(v for k, v in vars(Languages).items() if not k.startswith("__")), multiselect=True, label="languages", info="list of languages to keep. empty for all")
languages_textbox.prepare_parameter = non_empty_list_or_none
language_threshold_slider = gr.Slider(0, 1, value=0.65, step=0.05, label="language_threshold", info="minimum score to accept a document")
language_filtering_checkbox.change(lambda visible: gr.Accordion(visible=visible), inputs=language_filtering_checkbox, outputs=acc)
language_filtering_parameters_components = [languages_textbox, language_threshold_slider]
with gr.Column(visible=False) as col:
blocks_uis.append(col)
gr.Markdown("## 4. Gopher Filtering (repetitions) \n\nUses the [Gopher](https://huggingface.co/papers/2112.11446) text repetition filters.")
with gr.Group():
gopher_filtering_repetitions_checkbox = gr.Checkbox(True, label="Enable")
with gr.Accordion("Parameters", open=True) as acc:
with gr.Group():
with gr.Row():
language_dropdown1 = gr.Dropdown(sorted(v for k, v in vars(Languages).items() if not k.startswith("__")), value=Languages.english, label="language", info="tokenizer language")
top_n_grams_textbox = gr.Textbox("(2, 0.2), (3, 0.18), (4, 0.16)", label="top_n_grams")
top_n_grams_textbox.prepare_parameter = ast.literal_eval
dup_n_grams_textbox = gr.Textbox("(5, 0.15), (6, 0.14), (7, 0.13), (8, 0.12), (9, 0.11), (10, 0.10)", label="dup_n_grams")
dup_n_grams_textbox.prepare_parameter = ast.literal_eval
with gr.Row():
dup_line_frac_slider = gr.Slider(0, 1, value=0.3, step=0.05, label="dup_line_frac")
dup_para_frac_slider = gr.Slider(0, 1, value=0.3, step=0.05, label="dup_para_frac")
dup_line_char_frac_slider = gr.Slider(0, 1, value=0.2, step=0.05, label="dup_line_char_frac")
dup_para_char_frac_slider = gr.Slider(0, 1, value=0.2, step=0.05, label="dup_para_char_frac")
gopher_filtering_repetitions_checkbox.change(lambda visible: gr.Accordion(visible=visible), inputs=gopher_filtering_repetitions_checkbox, outputs=acc)
gopher_filtering_repetitions_parameters_components = [language_dropdown1, top_n_grams_textbox, dup_n_grams_textbox, dup_line_frac_slider, dup_para_frac_slider, dup_line_char_frac_slider, dup_para_char_frac_slider]
with gr.Column(visible=False) as col:
blocks_uis.append(col)
gr.Markdown("## 8. PII Removal \n\nReplaces email addresses and ip addresses in the document text.")
with gr.Group():
pii_removal_checkbox = gr.Checkbox(True, label="Enable")
with gr.Accordion("Parameters", open=True) as acc:
with gr.Row():
remove_emails_checkbox = gr.Checkbox(True, label="remove_emails", info="Replace email addresses")
remove_ips_checkbox = gr.Checkbox(True, label="remove_ips", info="Replace IP addresses")
only_remove_public_ips_checkbox = gr.Checkbox(True, label="only_remove_public_ips", info="by default we only replace public (and thus PII) IPs")
with gr.Row():
email_replacement_textbox = gr.Textbox("[email protected], [email protected]", label="email_replacement", info="strings to use as replacement. They will be used in a circular way")
email_replacement_textbox.prepare_parameter = prepare_as_list_or_none
ip_replacement_textbox = gr.Textbox("22.214.171.124, 126.96.36.199, 188.8.131.52, 184.108.40.206, 220.127.116.11, 18.104.22.168", label="ip_replacement", info="same as email_replacement but for IP addresses")
ip_replacement_textbox.prepare_parameter = prepare_as_list_or_none
pii_removal_checkbox.change(lambda visible: gr.Accordion(visible=visible), inputs=pii_removal_checkbox, outputs=acc)
pii_removal_parameters_components = [remove_emails_checkbox, remove_ips_checkbox, only_remove_public_ips_checkbox, email_replacement_textbox, ip_replacement_textbox]
with gr.Column(visible=False) as col:
blocks_uis.append(col)
gr.Markdown("## 7. Custom Filters \n\nUses the [FineWeb](https://huggingface.co/datasets/HuggingFaceFW/fineweb) custom text filters.")
with gr.Group():
custom_filters_checkbox = gr.Checkbox(True, label="Enable")
with gr.Accordion("Parameters", open=True) as acc:
with gr.Row():
line_punct_thr_slider = gr.Slider(0, 1, value=0.12, step=0.01, label="line_punct_thr")
line_punct_exclude_zero = gr.Checkbox(False, label="line_punct_exclude_zero")
short_line_thr_slider = gr.Slider(0, 1, value=0.67, step=0.01, label="short_line_thr")
short_line_length_slider = gr.Slider(0, 100, value=30, step=1, label="short_line_length")
char_duplicates_ratio_slider = gr.Slider(0, 1, value=0.01, step=0.01, label="char_duplicates_ratio")
new_line_ratio_slider = gr.Slider(0, 1, value=0.3, step=0.01, label="new_line_ratio")
custom_filters_checkbox.change(lambda visible: gr.Accordion(visible=visible), inputs=custom_filters_checkbox, outputs=acc)
custom_filters_parameters_components = [line_punct_thr_slider, line_punct_exclude_zero, short_line_thr_slider, short_line_length_slider, char_duplicates_ratio_slider, new_line_ratio_slider]
with gr.Column(visible=False) as col:
blocks_uis.append(col)
gr.Markdown("## 6. C4 Filters\n\nUses the [C4](https://huggingface.co/datasets/allenai/c4) text size and content filters.")
with gr.Group():
c4_filters_checkbox = gr.Checkbox(True, label="Enable")
with gr.Accordion(" Parameters", open=True) as acc:
with gr.Group():
with gr.Row():
split_paragraph_checkbox = gr.Checkbox(True, label="split_paragraph", info="disable to apply the filters to each sentence instead of to each line")
with gr.Row():
language_dropdown2 = gr.Dropdown(sorted(v for k, v in vars(Languages).items() if not k.startswith("__")), value=Languages.english, label="language", info="tokenizer language")
min_num_sentences_slider = gr.Slider(0, 10, value=5, step=1, label="min_num_sentences", info="remove documents that do not have at least this number of sentences (after line filtering)")
min_words_per_line_slider = gr.Slider(0, 10, value=3, step=1, label="min_words_per_line", info="drop lines without this min number of words")
max_word_length_slider = gr.Slider(0, 2000, value=1000, step=10, label="max_word_length", info=" drop lines where at least one word has more than this number of characters")
with gr.Row():
remove_citations_checkbox = gr.Checkbox(True, label="remove_citations", info="remove wikipedia style citations from the text")
filter_no_terminal_punct_checkbox = gr.Checkbox(True, label="filter_no_terminal_punct", info="remove lines without terminal punctuation marks")
filter_lorem_ipsum_checkbox = gr.Checkbox(True, label="filter_lorem_ipsum", info="drop documents that contain 'lorem ipsum'")
filter_javascript_checkbox = gr.Checkbox(True, label="filter_javascript", info="drop lines mentioning 'javascript'")
filter_curly_bracket = gr.Checkbox(True, label="filter_curly_bracket", info="drop documents containing {")
filter_policy = gr.Checkbox(True, label="filter_policy", info="drop lines containing any of the policy phrases (e.g. 'terms of use', 'use cookies')")
c4_filters_checkbox.change(lambda visible: gr.Accordion(visible=visible), inputs=c4_filters_checkbox, outputs=acc)
c4_filters_parameters_components = [split_paragraph_checkbox, language_dropdown2, min_num_sentences_slider, min_words_per_line_slider, max_word_length_slider, remove_citations_checkbox, filter_no_terminal_punct_checkbox, filter_lorem_ipsum_checkbox, filter_javascript_checkbox, filter_curly_bracket, filter_policy]
with gr.Column(visible=False) as col:
blocks_uis.append(col)
gr.Markdown("## 5. Gopher Filtering (quality) \n\nUses the [Gopher](https://huggingface.co/papers/2112.11446) text quality filters.")
with gr.Group():
gopher_filtering_quality_checkbox = gr.Checkbox(True, label="Enable")
with gr.Accordion("Parameters", open=True) as acc:
with gr.Group():
with gr.Row():
language_dropdown2 = gr.Dropdown(sorted(v for k, v in vars(Languages).items() if not k.startswith("__")), value=Languages.english, label="language", info="tokenizer language")
min_doc_words_slider = gr.Slider(0, 1000, value=50, step=10, label="min_doc_words")
max_doc_words_slider = gr.Slider(0, 200_000, value=100_000, step=10_000, label="max_doc_words")
with gr.Row():
min_avg_word_length_slider = gr.Slider(0, 20, value=3, step=1, label="min_avg_word_length")
max_avg_word_length_slider = gr.Slider(0, 20, value=10, step=1, label="max_avg_word_length")
with gr.Row():
max_symbol_word_ratio_slider = gr.Slider(0, 1, value=0.1, step=0.05, label="max_symbol_word_ratio")
max_bullet_lines_ratio_slider = gr.Slider(0, 1, value=0.9, step=0.05, label="max_bullet_lines_ratio")
max_ellipsis_lines_ratio_slider = gr.Slider(0, 1, value=0.3, step=0.05, label="max_ellipsis_lines_ratio")
max_non_alpha_words_ratio_slider = gr.Slider(0, 1, value=0.8, step=0.05, label="max_non_alpha_words_ratio")
with gr.Row():
min_stop_words_slider = gr.Slider(0, 10, value=2, step=1, label="min_stop_words")
stop_words_textbox = gr.Textbox("the, be, to, of, and, that, have, with", label="stop_words")
stop_words_textbox.prepare_parameter = prepare_as_list_or_none
gopher_filtering_quality_checkbox.change(lambda visible: gr.Accordion(visible=visible), inputs=gopher_filtering_quality_checkbox, outputs=acc)
gopher_filtering_quality_parameters_components = [language_dropdown2, min_doc_words_slider, max_doc_words_slider, min_avg_word_length_slider, max_avg_word_length_slider, max_symbol_word_ratio_slider, max_bullet_lines_ratio_slider, max_ellipsis_lines_ratio_slider, max_non_alpha_words_ratio_slider, min_stop_words_slider, stop_words_textbox]
steps_parameters_components = [
url_filtering_parameters_components,
text_extraction_parameters_components,
language_filtering_parameters_components,
gopher_filtering_repetitions_parameters_components,
gopher_filtering_quality_parameters_components,
c4_filters_parameters_components,
custom_filters_parameters_components,
pii_removal_parameters_components
]
with gr.Column():
with gr.Tabs(elem_classes="scollabe_tabs"):
with gr.Tab("Output (and % of data)") as output_tab:
output_dataframe = gr.DataFrame(datatype="markdown")
with gr.Tab("Excluded (and % of data)") as excluded_tab:
with gr.Tabs(elem_classes="scollabe_tabs"):
excluded_dataframes: dict[Type, gr.DataFrame] = {}
excluded_tabs: dict[Type, gr.Tab] = {}
for step in steps:
if issubclass(step, BaseFilter) and step is not URLFilter:
with gr.Tab(step.__name__ + " (and % of data)") as t:
excluded_dataframes[step] = gr.DataFrame(datatype="markdown")
excluded_tabs[step] = t
with gr.Tab("Python code") as code_tab:
python_code_markdown = gr.Markdown(DEFAULT_CODE)
gr.Markdown("_powered by [datatrove](https://github.com/huggingface/datatrove)_")
def show_block_ui(i, current_state: dict):
if i == current_state.get("selected_block"):
i = None
return {**{block_ui: gr.Column(visible=(j == i)) for j, block_ui in enumerate(blocks_uis)}, state: {"selected_block": i}}
for i, button in enumerate(gallery_image_buttons):
button.click(partial(show_block_ui, i), inputs=[state], outputs=blocks_uis + [state])
inputs = [
url_filtering_checkbox,
text_extraction_checkbox,
language_filtering_checkbox,
gopher_filtering_repetitions_checkbox,
gopher_filtering_quality_checkbox,
c4_filters_checkbox,
custom_filters_checkbox,
pii_removal_checkbox
] + sum(steps_parameters_components, [])
def view_pipeline_results(*args):
enable_steps, steps_parameters = args[:len(steps)], args[len(steps):]
steps_parameters_iter = iter(steps_parameters)
steps_parameters = [
{
parameters_component.label: parameters_component.prepare_parameter(parameter) if hasattr(parameters_component, "prepare_parameter") else parameter
for parameters_component, parameter in zip(step_parameters_components, steps_parameters_iter)
}
for step_parameters_components in steps_parameters_components
]
default_steps_parameters = [
{
parameters_component.label: parameters_component.prepare_parameter(parameters_component.value) if hasattr(parameters_component, "prepare_parameter") else parameters_component.value
for parameters_component in step_parameters_components
}
for step_parameters_components in steps_parameters_components
]
yield {
python_code_markdown: dedent(
"""
```python
from datatrove.executor.local import LocalPipelineExecutor
from datatrove.pipeline.extractors import Trafilatura
from datatrove.pipeline.filters import (
C4QualityFilter,
FineWebQualityFilter,
GopherQualityFilter,
GopherRepetitionFilter,
LanguageFilter,
URLFilter,
)
from datatrove.pipeline.formatters import PIIFormatter
from datatrove.pipeline.readers import WarcReader
"""
).strip() + (
"\n\n"
"pipeline_executor = LocalPipelineExecutor(\n"
" pipeline=[\n"
f' WarcReader("s3://commoncrawl/crawl-data/{DUMP_TO_PROCESS}/segments", glob_pattern="*/warc/*"),\n'
) + ",\n".join([
" " + step.__name__ + "(" + ", ".join(arg + "=" + str(value) for arg, value in step_parameters.items() if value != default_step_parameters[arg] and arg != "exclusion_writer") + ")"
for step, step_parameters, default_step_parameters, enable_step in zip(steps, steps_parameters, default_steps_parameters, enable_steps)
if enable_step
]) + (
"\n"
" ]\n"
")"
) + dedent(
"""
pipeline_executor.run()
```
"""
)
}
class ExclusionWriter:
def __init__(self) -> None:
self.docs: list[Document] = []
def __enter__(self):
return self
def __exit__(self, exc_type, exc_val, exc_tb):
return
def write(self, doc, rank):
self.docs.append(doc)
steps_to_run = [
step(**step_parameters, **({"exclusion_writer": ExclusionWriter()} if step in excluded_dataframes else {}))
for step, step_parameters, enable_step in zip(steps, steps_parameters, enable_steps)
if enable_step
]
output_docs: list[Document] = []
num_warc_samples = 0
timeout_time = time.time() + TIMEOUT
def increment_num_warc_samples(data, rank, world_size, num_warc_samples_per_doc=1):
nonlocal num_warc_samples
for x in data:
num_warc_samples += num_warc_samples_per_doc
yield x
def check_timeout(data, rank, world_size):
for x in data:
if time.time() > timeout_time:
gr.Info("Pipeline timed out")
break
yield x
if steps_parameters[:2] == default_steps_parameters[:2] and all(enable_steps[:2]):
pipeline_executor = LocalPipelineExecutor(
pipeline=[
JsonlReader(data_folder=f"output_text_extraction-full/base_processing/output/{DUMP_TO_PROCESS}", glob_pattern="*.jsonl.gz"),
partial(increment_num_warc_samples, num_warc_samples_per_doc=2000 / 1687),
check_timeout
] + steps_to_run[2:] + [
lambda data, rank, world_size: islice(data, 100),
lambda data, rank, world_size: map(output_docs.append, data)
],
logging_dir="logs",
skip_completed=False
)
else:
pipeline_executor = LocalPipelineExecutor(
pipeline=[
WarcReader(data_folder="data", glob_pattern="*.warc.gz"),
increment_num_warc_samples,
check_timeout
] + steps_to_run + [
lambda data, rank, world_size: islice(data, 100),
lambda data, rank, world_size: map(output_docs.append, data)
],
logging_dir="logs",
skip_completed=False
)
from threading import Thread
thread = Thread(target=pipeline_executor.run)
thread.start()
while thread.is_alive():
thread.join(timeout=1)
if num_warc_samples:
yield {
output_tab: gr.Tab(f"Output ({len(output_docs)/num_warc_samples*100:.03f}%)"),
excluded_tab: gr.Tab(f"Excluded ({100 - len(output_docs)/num_warc_samples*100:.03f}%)"),
output_dataframe: pd.DataFrame({"text": [doc.text for doc in output_docs]}),
**{
excluded_dataframes[type(step_to_run)]: pd.DataFrame({"text": [doc.text for doc in step_to_run.exclusion_writer.docs]})
for step_to_run in pipeline_executor.pipeline
if isinstance(step_to_run, BaseFilter) and type(step_to_run) in excluded_dataframes
},
**{
excluded_tabs[type(step_to_run)]: gr.Tab(f"{type(step_to_run).__name__} ({len(step_to_run.exclusion_writer.docs)/num_warc_samples*100:.03f}%)")
for step_to_run in pipeline_executor.pipeline
if isinstance(step_to_run, BaseFilter) and type(step_to_run) in excluded_dataframes
},
}
else:
yield {
output_tab: gr.Tab("Output (loading...)"),
excluded_tab: gr.Tab("Excluded (loading...)"),
**{
excluded_dataframes[type(step_to_run)]: pd.DataFrame({"text": []})
for step_to_run in pipeline_executor.pipeline
if isinstance(step_to_run, BaseFilter) and type(step_to_run) in excluded_dataframes
},
**{
excluded_tabs[type(step_to_run)]: gr.Tab(f"{type(step_to_run).__name__}")
for step_to_run in pipeline_executor.pipeline
if isinstance(step_to_run, BaseFilter) and type(step_to_run) in excluded_dataframes
},
}
yield {
output_tab: gr.Tab(f"Output ({len(output_docs)/num_warc_samples*100:.03f}%)"),
excluded_tab: gr.Tab(f"Excluded ({100 - len(output_docs)/num_warc_samples*100:.03f}%)"),
output_dataframe: pd.DataFrame({"text": [doc.text for doc in output_docs]}),
**{
excluded_dataframes[type(step_to_run)]: pd.DataFrame({"text": [doc.text for doc in step_to_run.exclusion_writer.docs]})
for step_to_run in pipeline_executor.pipeline
if isinstance(step_to_run, BaseFilter) and type(step_to_run) in excluded_dataframes
},
**{
excluded_tabs[type(step_to_run)]: gr.Tab(f"{type(step_to_run).__name__} ({len(step_to_run.exclusion_writer.docs)/num_warc_samples*100:.03f}%)")
for step_to_run in pipeline_executor.pipeline
if isinstance(step_to_run, BaseFilter) and type(step_to_run) in excluded_dataframes
},
}
view_pipeline_results_button.click(view_pipeline_results, inputs=inputs, outputs=[output_tab, output_dataframe, excluded_tab, python_code_markdown] + list(excluded_dataframes.values()) + list(excluded_tabs.values()))
if __name__ == "__main__":
demo.launch()
|