run-duckdb-jobs / app.py
lhoestq's picture
lhoestq HF Staff
add run.py and v0 of the app
73e0168
raw
history blame
6.17 kB
import re
import subprocess
import yaml
import gradio as gr
import requests
from huggingface_hub import HfApi
CMD = ["python" ,"run.py"]
with open("README.md") as f:
METADATA = yaml.safe_load(f.read().split("---\n")[1])
TITLE = METADATA["title"]
EMOJI = METADATA["emoji"]
try:
process = subprocess.run(CMD + ["--help"], stdout=subprocess.PIPE, stderr=subprocess.PIPE)
HELP = not process.returncode and (process.stdout or process.stderr).decode()
except Exception:
HELP = False
DRY_RUN = bool(HELP) and bool(m :=re.search("--dry(-|_)run", HELP)) and m.group(0)
def update_pbars(pbars: dict[str, float], line: str):
if (percent_match := re.search("\\d+(?:\\.\\d+)?%", line)) and any(c in line.split("%")[1][:10] for c in "|β–ˆβ–Œ"):
[pbars.pop(desc) for desc, percent in pbars.items() if percent == 1.]
percent = float(percent_match.group(0)[:-1]) / 100
desc = line[:percent_match.start()].strip() or "Progress"
pbars[desc] = percent
def dry_run(src, config, split, dst, query):
if not all([src, config, split, dst, query]):
raise gr.Error("Please fill source, destination and query.")
process = subprocess.Popen(CMD + ["--src", src, "--config", config, "--split", split, "--dst", dst, "--query", query, DRY_RUN], stdout=subprocess.PIPE)
logs = ""
for line in iter(process.stdout.readline, b""):
logs += line.decode()
yield {output_markdown: logs, progress_labels: gr.Label(visible=False)}
def run(src, config, split, dst, query):
if not all([src, config, split, dst, query]):
raise gr.Error("Please fill source, destination and query.")
raise gr.Error("NotImplemented")
READ_FUNCTIONS = ("pl.read_parquet", "pl.read_csv", "pl.read_json")
NUM_TRENDING_DATASETS = 10
with gr.Blocks() as demo:
with gr.Row():
with gr.Column(scale=10):
gr.Markdown(f"# {TITLE} {EMOJI}")
with gr.Column():
gr.LoginButton(scale=0.1)
with gr.Row():
with gr.Column():
with gr.Row():
loading_codes_json = gr.JSON([], visible=False)
dataset_dropdown = gr.Dropdown(label="Source Dataset", allow_custom_value=True, scale=10)
subset_dropdown = gr.Dropdown(info="Subset", allow_custom_value=True, show_label=False, visible=False)
split_dropdown = gr.Dropdown(info="Split", allow_custom_value=True, show_label=False, visible=False)
with gr.Column(scale=0.1, min_width=60):
gr.HTML("<div style='font-size: 4em;'>β†’</div>")
with gr.Column():
dst_dropdown = gr.Dropdown(label="Destination Dataset", allow_custom_value=True)
query_textarea = gr.TextArea(label="SQL Query", placeholder="SELECT * FROM src;", value="SELECT * FROM src;", container=False, show_label=False)
with gr.Row():
run_button = gr.Button("Run", scale=10, variant="primary")
if DRY_RUN:
dry_run_button = gr.Button("Dry-Run")
progress_labels= gr.Label(visible=False, label="Progress")
output_markdown = gr.Markdown(label="Output logs")
run_button.click(run, inputs=[dataset_dropdown, subset_dropdown, split_dropdown, dst_dropdown, query_textarea], outputs=[progress_labels, output_markdown])
if DRY_RUN:
dry_run_button.click(dry_run, inputs=[dataset_dropdown, subset_dropdown, split_dropdown, dst_dropdown, query_textarea], outputs=[progress_labels, output_markdown])
def show_subset_dropdown(dataset: str):
if dataset and "/" not in dataset.strip().strip("/"):
return []
resp = requests.get(f"https://datasets-server.huggingface.co/compatible-libraries?dataset={dataset}", timeout=3).json()
loading_codes = ([lib["loading_codes"] for lib in resp.get("libraries", []) if lib["function"] in READ_FUNCTIONS] or [[]])[0] or []
subsets = [loading_code["config_name"] for loading_code in loading_codes]
subset = (subsets or [""])[0]
return dict(choices=subsets, value=subset, visible=len(subsets) > 1, key=hash(str(loading_codes))), loading_codes
def show_split_dropdown(subset: str, loading_codes: list[dict]):
splits = ([list(loading_code["arguments"]["splits"]) for loading_code in loading_codes if loading_code["config_name"] == subset] or [[]])[0]
split = (splits or [""])[0]
return dict(choices=splits, value=split, visible=len(splits) > 1, key=hash(str(loading_codes) + subset))
@demo.load(outputs=[dataset_dropdown, loading_codes_json, subset_dropdown, split_dropdown])
def _fetch_datasets(request: gr.Request):
dataset = "CohereForAI/Global-MMLU"
datasets = [dataset] + [ds.id for ds in HfApi().list_datasets(limit=NUM_TRENDING_DATASETS, sort="trendingScore", direction=-1) if ds.id != dataset]
subsets, loading_codes = show_subset_dropdown(dataset)
splits = show_split_dropdown(subsets["value"], loading_codes)
return {
dataset_dropdown: gr.Dropdown(choices=datasets, value=dataset),
loading_codes_json: loading_codes,
subset_dropdown: gr.Dropdown(**subsets),
split_dropdown: gr.Dropdown(**splits),
}
@dataset_dropdown.select(inputs=[dataset_dropdown], outputs=[subset_dropdown, split_dropdown])
def _show_subset_dropdown(dataset: str):
subsets, loading_codes = show_subset_dropdown(dataset)
splits = show_split_dropdown(subsets["value"], loading_codes)
return {
subset_dropdown: gr.Dropdown(**subsets),
split_dropdown: gr.Dropdown(**splits),
}
@subset_dropdown.select(inputs=[dataset_dropdown, subset_dropdown, loading_codes_json], outputs=[split_dropdown])
def _show_split_dropdown(dataset: str, subset: str, loading_codes: list[dict]):
splits = show_split_dropdown(subset, loading_codes)
return {
split_dropdown: gr.Dropdown(**splits),
}
if HELP:
with demo.route("Help", "/help"):
gr.Markdown(f"# Help\n\n```\n{HELP}\n```")
with demo.route("Jobs", "/jobs"):
gr.Markdown("# Jobs")
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0")