run-duckdb-jobs / start_app.py
lhoestq's picture
lhoestq HF Staff
rename
c6a3e13
raw
history blame
11.6 kB
import json
import os
import re
import subprocess
import time
import yaml
import gradio as gr
import pandas as pd
import requests
from huggingface_hub import HfApi, get_token
CMD = ["python" ,"run_job.py"]
ARG_NAMES = ["<src>", "<dst>", "<query>", "[-c config]", "[-s split]", "[-p private]"]
CONTENT = """
## Usage:
```bash
curl -L 'https://huggingface.co/api/jobs/<username>' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer <hf_token>' \
-d '{{
"spaceId": "{SPACE_ID}",
"command": {CMD},
"arguments": {ARG_NAMES},
"environment": {{"HF_TOKEN": <hf_token>}},
"flavor": "cpu-basic"
}}'
```
## Example:
"""
with open("README.md") as f:
METADATA = yaml.safe_load(f.read().split("---\n")[1])
TITLE = METADATA["title"]
SHORT_DESCRIPTION = METADATA.get("short_description")
EMOJI = METADATA["emoji"]
SPACE_ID = os.environ.get("SPACE_ID") or "lhoestq/run-duckdb-jobs"
try:
process = subprocess.run(CMD + ["--help"], stdout=subprocess.PIPE, stderr=subprocess.PIPE)
HELP = not process.returncode and (process.stdout or process.stderr).decode()
except Exception:
HELP = False
DRY_RUN = bool(HELP) and bool(m :=re.search("--dry(-|_)run", HELP)) and m.group(0)
def parse_log(line: str, pbars: dict[str, float] = None):
if line.startswith("data: {"):
data = json.loads(line[len("data: "):])
data, timestamp = data["data"], data["timestamp"]
if pbars is not None and data.startswith("===== Job started at"):
pbars.pop("Starting βš™οΈ", None)
pbars["Running πŸƒ"] = 0.0
return f"[{timestamp}] {data}\n\n"
elif pbars is not None and (percent_match := re.search("\\d+(?:\\.\\d+)?%", data)) and any(c in data.split("%")[1][:10] for c in "|β–ˆβ–Œ"):
pbars.pop("Running πŸƒ", None)
[pbars.pop(desc) for desc, percent in pbars.items() if percent == 1.]
percent = float(percent_match.group(0)[:-1]) / 100
desc = data[:percent_match.start()].strip() or "Progress"
pbars[desc] = percent
else:
return f"[{timestamp}] {data}\n\n"
return ""
def dry_run(src, config, split, dst, query):
if not all([src, dst, query]):
raise gr.Error("Please fill source, destination and query.")
args = ["--src", src] + (["--config", config] if config else []) + (["--split", split] if split else []) + [ "--dst", dst, "--query", query, DRY_RUN]
cmd = CMD + args
logs = "Job:\n\n```bash\n" + " ".join('"' + arg.replace('"', '\"""') + '"' if " " in arg else arg for arg in cmd) + "\n```\nOutput:\n\n"
yield {output_markdown: logs, progress_labels: gr.Label(visible=False), details_accordion: gr.Accordion(open=True)}
process = subprocess.Popen(cmd, stdout=subprocess.PIPE)
for line in iter(process.stdout.readline, b""):
logs += line.decode()
yield {output_markdown: logs}
def run(src, config, split, dst, query, oauth_token: gr.OAuthToken | None, profile: gr.OAuthProfile | None):
if not all([src, dst, query]):
raise gr.Error("Please fill source, destination and query.")
if oauth_token and profile:
token = oauth_token.token
username = profile.username
elif (token := get_token()):
username = HfApi().whoami(token=token)["name"]
else:
raise gr.Error("Please log in to run the job.")
args = ["--src", src] + (["--config", config] if config else []) + (["--split", split] if split else []) + [ "--dst", dst, "--query", query, DRY_RUN]
cmd = CMD + args
logs = "Job:\n\n```bash\n" + " ".join('"' + arg.replace('"', '\"""') + '"' if " " in arg else arg for arg in cmd) + "\n```\nOutput:\n\n"
pbars = {}
yield {output_markdown: logs, progress_labels: gr.Label(pbars, visible=bool(pbars))}
resp = requests.post(
f"https://huggingface.co/api/jobs/{username}",
json={
"spaceId": SPACE_ID,
"arguments": args,
"command": CMD,
"environment": {"HF_TOKEN": token},
"flavor": "cpu-basic"
},
headers={"Authorization": f"Bearer {token}"}
)
if resp.status_code != 200:
logs += resp.text
pbars = {"Finished with an error ❌": 1.0}
else:
job_id = resp.json()["metadata"]["job_id"]
pbars = {"Starting βš™οΈ": 0.0}
yield {output_markdown: logs, progress_labels: gr.Label(pbars, visible=bool(pbars))}
resp = requests.get(
f"https://huggingface.co/api/jobs/{username}/{job_id}/logs-stream",
headers={"Authorization": f"Bearer {token}"},
stream=True
)
for line in resp.iter_lines():
logs += parse_log(line.decode("utf-8"), pbars=pbars)
yield {output_markdown: logs, progress_labels: gr.Label(pbars, visible=bool(pbars))}
job_status = {"status": {"stage": "RUNNING"}}
while True:
job_status = requests.get(
f"https://huggingface.co/api/jobs/{username}/{job_id}",
headers={"Authorization": f"Bearer {token}"}
).json()
if job_status["status"]["stage"] == "RUNNING":
time.sleep(1)
else:
break
if job_status["status"]["stage"] == "COMPLETED":
pbars = {"Finished βœ…": 1.0}
else:
logs += f'{job_status["status"]["message"]} ({job_status["status"]["error"]})'
pbars = {"Finished with an error ❌": 1.0}
yield {output_markdown: logs, progress_labels: gr.Label(pbars, visible=bool(pbars))}
READ_FUNCTIONS = ("pl.read_parquet", "pl.read_csv", "pl.read_json")
NUM_TRENDING_DATASETS = 10
with gr.Blocks() as demo:
with gr.Row():
with gr.Column(scale=10):
gr.Markdown(f"# {TITLE} {EMOJI}")
if SHORT_DESCRIPTION:
gr.Markdown(SHORT_DESCRIPTION)
with gr.Column():
gr.LoginButton()
gr.Markdown(CONTENT.format(SPACE_ID=SPACE_ID, CMD=json.dumps(CMD), ARG_NAMES=json.dumps(ARG_NAMES)))
with gr.Row():
with gr.Column(scale=10):
with gr.Row():
loading_codes_json = gr.JSON([], visible=False)
dataset_dropdown = gr.Dropdown(label="Source Dataset", allow_custom_value=True, scale=10)
subset_dropdown = gr.Dropdown(info="Subset", allow_custom_value=True, show_label=False, visible=False)
split_dropdown = gr.Dropdown(info="Split", allow_custom_value=True, show_label=False, visible=False)
with gr.Column(min_width=60):
gr.HTML("<div style='font-size: 4em;'>β†’</div>")
with gr.Column(scale=10):
dst_dropdown = gr.Dropdown(label="Destination Dataset", allow_custom_value=True)
query_textarea = gr.TextArea(label="SQL Query", placeholder="SELECT * FROM src;", value="SELECT * FROM src;", container=False, show_label=False)
with gr.Row():
run_button = gr.Button("Run", scale=10, variant="primary")
if DRY_RUN:
dry_run_button = gr.Button("Dry-Run")
progress_labels= gr.Label(visible=False, label="Progress")
with gr.Accordion("Details", open=False) as details_accordion:
output_markdown = gr.Markdown(label="Output logs")
run_button.click(run, inputs=[dataset_dropdown, subset_dropdown, split_dropdown, dst_dropdown, query_textarea], outputs=[details_accordion, progress_labels, output_markdown])
if DRY_RUN:
dry_run_button.click(dry_run, inputs=[dataset_dropdown, subset_dropdown, split_dropdown, dst_dropdown, query_textarea], outputs=[details_accordion, progress_labels, output_markdown])
def show_subset_dropdown(dataset: str):
if dataset and "/" not in dataset.strip().strip("/"):
return []
resp = requests.get(f"https://datasets-server.huggingface.co/compatible-libraries?dataset={dataset}", timeout=3).json()
loading_codes = ([lib["loading_codes"] for lib in resp.get("libraries", []) if lib["function"] in READ_FUNCTIONS] or [[]])[0] or []
subsets = [loading_code["config_name"] for loading_code in loading_codes]
subset = (subsets or [""])[0]
return dict(choices=subsets, value=subset, visible=len(subsets) > 1, key=hash(str(loading_codes))), loading_codes
def show_split_dropdown(subset: str, loading_codes: list[dict]):
splits = ([list(loading_code["arguments"]["splits"]) for loading_code in loading_codes if loading_code["config_name"] == subset] or [[]])[0]
split = (splits or [""])[0]
return dict(choices=splits, value=split, visible=len(splits) > 1, key=hash(str(loading_codes) + subset))
@demo.load(outputs=[dataset_dropdown, loading_codes_json, subset_dropdown, split_dropdown])
def _fetch_datasets(request: gr.Request):
dataset = "CohereForAI/Global-MMLU"
datasets = [dataset] + [ds.id for ds in HfApi().list_datasets(limit=NUM_TRENDING_DATASETS, sort="trendingScore", direction=-1) if ds.id != dataset]
subsets, loading_codes = show_subset_dropdown(dataset)
splits = show_split_dropdown(subsets["value"], loading_codes)
return {
dataset_dropdown: gr.Dropdown(choices=datasets, value=dataset),
loading_codes_json: loading_codes,
subset_dropdown: gr.Dropdown(**subsets),
split_dropdown: gr.Dropdown(**splits),
}
@dataset_dropdown.select(inputs=[dataset_dropdown], outputs=[subset_dropdown, split_dropdown])
def _show_subset_dropdown(dataset: str):
subsets, loading_codes = show_subset_dropdown(dataset)
splits = show_split_dropdown(subsets["value"], loading_codes)
return {
subset_dropdown: gr.Dropdown(**subsets),
split_dropdown: gr.Dropdown(**splits),
}
@subset_dropdown.select(inputs=[dataset_dropdown, subset_dropdown, loading_codes_json], outputs=[split_dropdown])
def _show_split_dropdown(dataset: str, subset: str, loading_codes: list[dict]):
splits = show_split_dropdown(subset, loading_codes)
return {
split_dropdown: gr.Dropdown(**splits),
}
if HELP:
with demo.route("Help", "/help"):
gr.Markdown(f"# Help\n\n```\n{HELP}\n```")
with demo.route("Jobs", "/jobs") as page:
gr.Markdown("# Jobs")
jobs_dataframe = gr.DataFrame(datatype="markdown")
@page.load(outputs=[jobs_dataframe])
def list_jobs(oauth_token: gr.OAuthToken | None, profile: gr.OAuthProfile | None):
if oauth_token and profile:
token = oauth_token.token
username = profile.username
elif (token := get_token()):
username = HfApi().whoami(token=token)["name"]
else:
return pd.DataFrame({"Log in to see jobs": []})
resp = requests.get(
f"https://huggingface.co/api/jobs/{username}",
headers={"Authorization": f"Bearer {token}"}
)
return pd.DataFrame([
{
"id": job["metadata"]["id"],
"created_at": job["metadata"]["created_at"],
"stage": job["compute"]["status"]["stage"],
"output": f'[logs](https://huggingface.co/api/jobs/{username}/{job["metadata"]["id"]}/logs-stream)',
"command": str(job["compute"]["spec"]["extra"]["command"]),
"args": str(job["compute"]["spec"]["extra"]["args"]),
}
for job in resp.json()
if job["compute"]["spec"]["extra"]["input"]["spaceId"] == SPACE_ID
])
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0")