Spaces:
Running
Running
File size: 13,478 Bytes
72f684c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 |
from PIL import Image
from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode
import numpy as np
import matplotlib.pyplot as plt
from bs4 import BeautifulSoup
import re
from svgpathtools import svgstr2paths
import numpy as np
from PIL import Image
import cairosvg
from io import BytesIO
import numpy as np
import textwrap
import os
import base64
import io
CIRCLE_SVG = "<svg><circle cx='50%' cy='50%' r='50%' /></svg>"
VOID_SVF = "<svg></svg>"
def load_transforms():
transforms = {
'train': None,
'eval': None
}
return transforms
class ImageBaseProcessor():
def __init__(self, mean=None, std=None):
if mean is None:
mean = (0.48145466, 0.4578275, 0.40821073)
if std is None:
std = (0.26862954, 0.26130258, 0.27577711)
self.normalize = transforms.Normalize(mean=mean, std=std)
class ImageTrainProcessor(ImageBaseProcessor):
def __init__(self, mean=None, std=None, size=224, **kwargs):
super().__init__(mean, std)
self.size = size
self.transform = transforms.Compose([
transforms.Resize(self.size, interpolation=InterpolationMode.BICUBIC),
transforms.ToTensor(),
self.normalize
])
def __call__(self, item):
return self.transform(item)
def encode_image_base64(pil_image):
if pil_image.mode == 'RGBA':
pil_image = pil_image.convert('RGB') # Convert RGBA to RGB
buffered = io.BytesIO()
pil_image.save(buffered, format="JPEG")
base64_image = base64.b64encode(buffered.getvalue()).decode("utf-8")
return base64_image
# -------------- Generation utils --------------
def is_valid_svg(svg_text):
try:
svgstr2paths(svg_text)
return True
except Exception as e:
print(f"Invalid SVG: {str(e)}")
return False
def clean_svg(svg_text, output_width=None, output_height=None):
soup = BeautifulSoup(svg_text, 'xml') # Read as soup to parse as xml
svg_bs4 = soup.prettify() # Prettify to get a string
# Store the original signal handler
import signal
original_handler = signal.getsignal(signal.SIGALRM)
try:
# Set a timeout to prevent hanging
def timeout_handler(signum, frame):
raise TimeoutError("SVG processing timed out")
# Set timeout
signal.signal(signal.SIGALRM, timeout_handler)
signal.alarm(5)
# Try direct conversion without BeautifulSoup
svg_cairo = cairosvg.svg2svg(svg_bs4, output_width=output_width, output_height=output_height).decode()
except TimeoutError:
print("SVG conversion timed out, using fallback method")
svg_cairo = """<svg></svg>"""
finally:
# Always cancel the alarm and restore original handler, regardless of success or failure
signal.alarm(0)
signal.signal(signal.SIGALRM, original_handler)
svg_clean = "\n".join([line for line in svg_cairo.split("\n") if not line.strip().startswith("<?xml")]) # Remove xml header
return svg_clean
def use_placeholder():
return VOID_SVF
def process_and_rasterize_svg(svg_string, resolution=256, dpi = 128, scale=2):
try:
svgstr2paths(svg_string) # This will raise an exception if the svg is still not valid
out_svg = svg_string
except:
try:
svg = clean_svg(svg_string)
svgstr2paths(svg) # This will raise an exception if the svg is still not valid
out_svg = svg
except Exception as e:
out_svg = use_placeholder()
raster_image = rasterize_svg(out_svg, resolution, dpi, scale)
return out_svg, raster_image
def rasterize_svg(svg_string, resolution=224, dpi = 128, scale=2):
try:
svg_raster_bytes = cairosvg.svg2png(
bytestring=svg_string,
background_color='white',
output_width=resolution,
output_height=resolution,
dpi=dpi,
scale=scale)
svg_raster = Image.open(BytesIO(svg_raster_bytes))
except:
try:
svg = clean_svg(svg_string)
svg_raster_bytes = cairosvg.svg2png(
bytestring=svg,
background_color='white',
output_width=resolution,
output_height=resolution,
dpi=dpi,
scale=scale)
svg_raster = Image.open(BytesIO(svg_raster_bytes))
except:
svg_raster = Image.new('RGB', (resolution, resolution), color = 'white')
return svg_raster
def find_unclosed_tags(svg_content):
all_tags_pattern = r"<(\w+)"
self_closing_pattern = r"<\w+[^>]*\/>"
all_tags = re.findall(all_tags_pattern, svg_content)
self_closing_matches = re.findall(self_closing_pattern, svg_content)
self_closing_tags = []
for match in self_closing_matches:
tag = re.search(all_tags_pattern, match)
if tag:
self_closing_tags.append(tag.group(1))
unclosed_tags = []
for tag in all_tags:
if all_tags.count(tag) > self_closing_tags.count(tag) + svg_content.count('</' + tag + '>'):
unclosed_tags.append(tag)
unclosed_tags = list(dict.fromkeys(unclosed_tags))
return unclosed_tags
# -------------- Plotting utils --------------
def plot_images_side_by_side_with_metrics(image1, image2, l2_dist, CD, post_processed, out_path):
array1 = np.array(image1).astype(np.float32)
array2 = np.array(image2).astype(np.float32)
diff = np.abs(array1 - array2).astype(np.uint8)
fig, axes = plt.subplots(1, 3, figsize=(10, 5))
axes[0].imshow(image1)
axes[0].set_title('generated_svg')
axes[0].axis('off')
axes[1].imshow(image2)
axes[1].set_title('gt')
axes[1].axis('off')
axes[2].imshow(diff)
axes[2].set_title('Difference')
axes[2].axis('off')
plt.suptitle(f"MSE: {l2_dist:.4f}, CD: {CD:.4f}, post-processed: {str(post_processed)}", fontsize=16, y=1.05)
plt.savefig(out_path, bbox_inches='tight', pad_inches=0.1)
image = Image.open(out_path)
plt.close(fig)
return image
def plot_images_side_by_side(image1, image2, out_path):
array1 = np.array(image1).astype(np.float32)
array2 = np.array(image2).astype(np.float32)
diff = np.abs(array1 - array2).astype(np.uint8)
fig, axes = plt.subplots(1, 3, figsize=(10, 5))
axes[0].imshow(image1)
axes[0].set_title('generated_svg')
axes[0].axis('off')
axes[1].imshow(image2)
axes[1].set_title('gt')
axes[1].axis('off')
axes[2].imshow(diff)
axes[2].set_title('Difference')
axes[2].axis('off')
plt.savefig(out_path, bbox_inches='tight', pad_inches=0.1)
image = Image.open(out_path)
plt.close(fig)
return image
def plot_images_side_by_side_temperatures(samples_temp, metrics, sample_dir, outpath_filename):
# Create a plot with the original image and different temperature results
num_temps = len(samples_temp)
fig, axes = plt.subplots(2, num_temps + 1, figsize=(15, 4), gridspec_kw={'height_ratios': [10, 2]})
# Plot the original image
gt_image_path = os.path.join(sample_dir, f'temp_{list(samples_temp.keys())[0]}', f'{outpath_filename}_or.png')
gt_image = Image.open(gt_image_path)
axes[0, 0].imshow(gt_image)
axes[0, 0].set_title('Original')
axes[0, 0].axis('off')
axes[1, 0].text(0.5, 0.5, 'Original', horizontalalignment='center', verticalalignment='center', fontsize=16)
axes[1, 0].axis('off')
# Plot the generated images for different temperatures and metrics
for idx, (temp, sample) in enumerate(samples_temp.items()):
gen_image_path = os.path.join(sample_dir, f'temp_{temp}', f'{outpath_filename}.png')
gen_image = Image.open(gen_image_path)
axes[0, idx + 1].imshow(gen_image)
axes[0, idx + 1].set_title(f'Temp {temp}')
axes[0, idx + 1].axis('off')
axes[1, idx + 1].text(0.5, 0.5, f'MSE: {metrics[temp]["mse"]:.2f}\nCD: {metrics[temp]["cd"]:.2f}',
horizontalalignment='center', verticalalignment='center', fontsize=12)
axes[1, idx + 1].axis('off')
# Save the comparison plot
comparison_path = os.path.join(sample_dir, f'{outpath_filename}_comparison.png')
plt.tight_layout()
plt.savefig(comparison_path)
plt.close()
def plot_images_and_prompt(prompt, svg_raster, gt_svg_raster, out_path):
# First col shows caption, second col shows generated svg, third col shows gt svg
fig, axes = plt.subplots(1, 3, figsize=(10, 5))
# Split the prompt into multiple lines if it exceeds a certain length
prompt_lines = textwrap.wrap(prompt, width=30)
prompt_text = '\n'.join(prompt_lines)
# Display the prompt in the first cell
axes[0].text(0, 0.5, prompt_text, fontsize=12, ha='left', wrap=True)
axes[0].axis('off')
axes[1].imshow(svg_raster)
axes[1].set_title('generated_svg')
axes[1].axis('off')
axes[2].imshow(gt_svg_raster)
axes[2].set_title('gt')
axes[2].axis('off')
plt.savefig(out_path, bbox_inches='tight', pad_inches=0.1)
image = Image.open(out_path)
plt.close(fig)
return image
def plot_images_and_prompt_with_metrics(prompt, svg_raster, gt_svg_raster, clip_score, post_processed, out_path):
# First col shows caption, second col shows generated svg, third col shows gt svg
fig, axes = plt.subplots(1, 3, figsize=(10, 5))
# Split the prompt into multiple lines if it exceeds a certain length
prompt_lines = textwrap.wrap(prompt, width=30)
prompt_text = '\n'.join(prompt_lines)
# Display the prompt in the first cell
axes[0].text(0, 0.5, prompt_text, fontsize=12, ha='left', wrap=True)
axes[0].axis('off')
axes[1].imshow(svg_raster)
axes[1].set_title('generated_svg')
axes[1].axis('off')
axes[2].imshow(gt_svg_raster)
axes[2].set_title('gt')
axes[2].axis('off')
plt.suptitle(f"CLIP Score: {clip_score:.4f}, post-processed: {str(post_processed)}", fontsize=16, y=1.05)
plt.savefig(out_path, bbox_inches='tight', pad_inches=0.1)
image = Image.open(out_path)
plt.close(fig)
return image
def plot_images_and_prompt_temperatures(prompt, samples_temp, metrics, sample_dir, outpath_filename):
# Calculate the number of temperature variations
num_temps = len(samples_temp)
# Create a plot with text, the original image, and different temperature results
fig, axes = plt.subplots(1, num_temps + 2, figsize=(5 + 3 * (num_temps + 1), 6))
# Split the prompt into multiple lines if it exceeds a certain length
prompt_lines = textwrap.wrap(prompt, width=30)
prompt_text = '\n'.join(prompt_lines)
# Display the prompt in the first cell
axes[0].text(0, 0.5, prompt_text, fontsize=12, ha='left', wrap=True)
axes[0].axis('off')
# Plot the GT (ground truth) image in the second cell
gt_image_path = os.path.join(sample_dir, f'temp_{list(samples_temp.keys())[0]}', f'{outpath_filename}_or.png')
gt_image = Image.open(gt_image_path)
axes[1].imshow(gt_image)
axes[1].set_title('GT Image')
axes[1].axis('off')
# Plot the generated images for different temperatures and display metrics
for idx, (temp, sample) in enumerate(samples_temp.items()):
gen_image_path = os.path.join(sample_dir, f'temp_{temp}', f'{outpath_filename}.png')
gen_image = Image.open(gen_image_path)
axes[idx + 2].imshow(gen_image)
axes[idx + 2].set_title(f'Temp {temp}')
axes[idx + 2].axis('off')
clip_score = metrics[temp]["clip_score"]
axes[idx + 2].text(0.5, -0.1, f'CLIP: {clip_score:.4f}', horizontalalignment='center', verticalalignment='center', fontsize=12, transform=axes[idx + 2].transAxes)
# Save the comparison plot
comparison_path = os.path.join(sample_dir, f'{outpath_filename}_comparison.png')
plt.tight_layout()
plt.savefig(comparison_path)
plt.close()
return comparison_path
def plot_image_tensor(image):
import numpy as np
from PIL import Image
tensor = image[0].cpu().float()
tensor = tensor.permute(1, 2, 0)
array = (tensor.numpy() * 255).astype(np.uint8)
im = Image.fromarray(array)
im.save("tmp/output_image.jpg")
def plot_grid_samples(images, num_cols=5, out_path = 'grid.png'):
# Calculate the number of rows required for the grid
num_images = len(images)
num_rows = (num_images + num_cols - 1) // num_cols
# Create a new figure
fig, axes = plt.subplots(num_rows, num_cols, figsize=(12, 8))
# Loop through the image files and plot them
for i, image in enumerate(images):
row = i // num_cols
col = i % num_cols
# Open and display the image using Pillow
if type(image) == str:
img = Image.open(image)
else:
img = image
axes[row, col].imshow(img)
# axes[row, col].set_title(os.path.basename(image_file))
axes[row, col].axis('off')
# Remove empty subplots
for i in range(num_images, num_rows * num_cols):
row = i // num_cols
col = i % num_cols
fig.delaxes(axes[row, col])
# Adjust spacing between subplots
plt.tight_layout()
# save image
plt.savefig(out_path, dpi=300)
image = Image.open(out_path)
plt.close(fig)
return image |