File size: 14,596 Bytes
72f684c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
import torch
import torch.nn as nn
from abc import ABC, abstractmethod
from starvector.model.adapters.adapter import Adapter
from starvector.model.image_encoder.image_encoder import ImageEncoder
from starvector.util import print_trainable_parameters
from transformers.generation.stopping_criteria import StoppingCriteria, StoppingCriteriaList

class StoppingCriteriaSub(StoppingCriteria):

    def __init__(self, stops=[]):
        super().__init__()  # Correct super() call
        self.stops = stops

    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor):
        # Check if any of the stop sequences are in the input_ids
        for stop_ids in self.stops:
            if input_ids[0][-len(stop_ids):].tolist() == stop_ids:
                return True
        return False

class StarVectorBase(nn.Module, ABC):
    def __init__(self, config, **kwargs):
        super().__init__()
        # Task-specific layers
        self.task = kwargs.get('task', 'im2svg')
        self.model_precision = kwargs.get('model_precision', config.torch_dtype)
        # Build Code LLM (StarCoder)
        self.svg_transformer = self._get_svg_transformer(config, **kwargs)
        
        if self.use_image_encoder():
            # Build Image Encoder
            self.image_encoder = ImageEncoder(config, **kwargs)
            
            # Build Adapter
            self.image_projection = self.get_adapter(config, **kwargs).to(dtype=self.model_precision)
        else:
            self.query_length = 0
            
        self.max_length = config.max_length_train - self.query_length - 4  # for added special tokens
        
        self.train_image_encoder = kwargs.get('train_image_encoder', False)
        self.train_LLM = kwargs.get('train_LLM', False)
        self.train_connector = kwargs.get('train_connector', False)

        # Freeze parameters
        self.freze_parameters(self.train_image_encoder, self.train_LLM, self.train_connector)
        print_trainable_parameters(self)

    @abstractmethod
    def _get_svg_transformer(self, config, **kwargs):
        """Get SVG transformer model - implementation differs between versions"""
        pass

    def freze_parameters(self, train_image_encoder, train_LLM, train_connector):
        """V2 implementation of parameter freezing"""
        if self.use_image_encoder():
            for _, param in self.image_encoder.named_parameters():
                param.requires_grad = train_image_encoder
                            
            # adapter trainable
            for _, param in self.image_projection.named_parameters():
                param.requires_grad = train_connector
                
        for _, param in self.svg_transformer.named_parameters():
            param.requires_grad = train_LLM

    def use_image_encoder(self):
        """Determine if image encoder should be used based on task"""
        return self.task == 'im2svg'

    def get_adapter(self, config, **kwargs):
        """Get adapter layer for image projection"""
        vision_hidden_size, self.query_length = self.get_hidden_size_and_query_length(config.image_encoder_type)
        llm_hidden_size = self.svg_transformer.transformer.config.hidden_size
        image_projection = Adapter(
            vision_hidden_size,
            llm_hidden_size,
            adapter_norm=config.adapter_norm,
            query_length=self.query_length,
            dropout_prob=kwargs.get('dropout', 0.1)
        )
        return image_projection

    def get_hidden_size_and_query_length(self, image_encoder_type):
        """Get hidden size and query length based on encoder type"""
        if image_encoder_type == 'clip':
            hidden_size = self.image_encoder.visual_encoder.num_features
            query_length = 257
        elif image_encoder_type == 'open-clip':
            hidden_size = self.image_encoder.visual_encoder.transformer.width
            query_length = 256
        elif image_encoder_type == 'vqgan':
            hidden_size = 256
            query_length = 196
        elif image_encoder_type == 'convnext':
            hidden_size = 1024
            query_length = 49
        elif 'siglip' in image_encoder_type:
            hidden_size = self.image_encoder.visual_encoder.head.mlp.fc2.out_features
            if '512' in image_encoder_type:
                query_length = 1024
            elif '384' in image_encoder_type:
                query_length = 576
            
        return hidden_size, query_length

    def _tokenize(self, text, max_length, device, add_special_tokens=True):
        """Common tokenization logic"""
        tokens = self.svg_transformer.tokenizer(
            text,
            truncation=True,
            add_special_tokens=add_special_tokens,
            padding='longest',
            max_length=max_length,
            return_tensors="pt"
        ).to(device)
        return tokens

    def _create_targets(self, tokens):
        """Create targets with padding mask"""
        target_mask = (tokens.input_ids == self.svg_transformer.tokenizer.pad_token_id)
        return tokens.input_ids.masked_fill(target_mask, -100)

    @abstractmethod
    def _get_embeddings(self, input_ids):
        """Get embeddings from input ids - implementation differs between v1 and v2"""
        pass

    def embed_text_to_svg(self, batch, device):
        """Common text to SVG embedding logic"""
        captions = batch["caption"]
        svgs = batch["svg"]
        samples = [captions[i] + self.svg_transformer.svg_start_token + svgs[i] + self.svg_transformer.tokenizer.eos_token 
                  for i in range(len(captions))]

        tokens = self._tokenize(samples, self.max_length, device)
        targets = self._create_targets(tokens)
        inputs_embeds = self._get_embeddings(tokens.input_ids)
        
        return inputs_embeds, tokens.attention_mask, targets

    def get_image_embeddings(self, batch, device):
        """Get image embeddings"""
        image = batch["image"].to(dtype=self.model_precision)
        embedded_image = self.image_encoder(image)
        conditioning_embeds = self.image_projection(embedded_image)
        return conditioning_embeds
    
    def embed_im_to_svg(self, batch, device):
        """Common image to SVG embedding logic"""
        # Process image
        image = batch["image"].to(dtype=self.model_precision)
        embedded_image = self.image_encoder(image)
        conditioning_embeds = self.image_projection(embedded_image)
        conditioning_embeds_att = torch.ones(conditioning_embeds.size()[:-1], dtype=torch.long).to(device)

        # Get SVG text with appropriate end tokens (implemented by subclasses)
        svg_text = self._get_svg_text(batch["svg"])
        
        svg_tokens = self._tokenize(svg_text, self.max_length, device)
        svg_tokens_embeds = self._get_embeddings(svg_tokens.input_ids)

        inputs_embeds = torch.cat([conditioning_embeds, svg_tokens_embeds], dim=1)
        
        svg_targets = self._create_targets(svg_tokens)
        empty_targets = torch.ones(conditioning_embeds_att.size(), dtype=torch.long).to(device).fill_(-100)
        targets = torch.cat([empty_targets, svg_targets], dim=1)

        attention_mask = torch.cat([conditioning_embeds_att, svg_tokens.attention_mask], dim=1)
        
        return inputs_embeds, attention_mask, targets

    def forward(self, batch):
        """Forward pass"""
        device = batch["image"].device
        task = self.task

        # Depending 
        if task == 'text2svg':
            inputs_embeds, attention_mask, targets = self.embed_text_to_svg(batch, device)
        elif task == 'im2svg':
            inputs_embeds, attention_mask, targets = self.embed_im_to_svg(batch, device)
        
        outputs = self.svg_transformer.transformer(
            inputs_embeds=inputs_embeds,
            attention_mask=attention_mask,
            labels=targets,
            return_dict=True,
            output_hidden_states=True,
            use_cache=False,
        )
        loss = outputs.loss 
        return loss

    
    @abstractmethod
    def _get_svg_text(self, svg_list):
        """Get SVG text with appropriate end tokens - implementation differs between v1 and v2"""
        pass
    
    
    def _prepare_generation_inputs(self, batch, prompt, device):
        """Common preparation for generation inputs"""
        image = batch["image"]
        image = image.to(device).to(self.model_precision)
        
        embedded_image = self.image_encoder(image)
        embedded_image = self.image_projection(embedded_image)
        embedded_att = torch.ones(embedded_image.size()[:-1], dtype=torch.long).to(device)
        
        if prompt is None:
            prompt = self.svg_transformer.prompt
        prompt = [prompt] * image.size(0)   
        
        prompt_tokens = self._tokenize(prompt, None, device, add_special_tokens=False)
        attention_mask = torch.cat([embedded_att, prompt_tokens.attention_mask], dim=1)    
        inputs_embeds = self._get_embeddings(prompt_tokens.input_ids)
        inputs_embeds = torch.cat([embedded_image, inputs_embeds], dim=1)
        
        return inputs_embeds, attention_mask, prompt_tokens

    def _get_generation_kwargs(self, base_kwargs):
        """Common generation kwargs preparation"""
        # Get token IDs for "</svg>"
        end_sequence = self.svg_transformer.tokenizer("</svg>", add_special_tokens=False)['input_ids']
        stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(stops=[end_sequence])])
        return {
            'inputs_embeds': base_kwargs['inputs_embeds'],
            'attention_mask': base_kwargs['attention_mask'],
            'do_sample': base_kwargs.get('use_nucleus_sampling', True),
            'top_p': base_kwargs.get('top_p', 0.9),
            'temperature': base_kwargs.get('temperature', 1),
            'num_beams': base_kwargs.get('num_beams', 2),
            'max_length': base_kwargs.get('max_length', 30),
            'min_length': base_kwargs.get('min_length', 1),
            'repetition_penalty': base_kwargs.get('repetition_penalty', 1.0),
            'length_penalty': base_kwargs.get('length_penalty', 1.0),
            'use_cache': base_kwargs.get('use_cache', True),
            'stopping_criteria': stopping_criteria
        }
    
    def generate_im2svg(self, batch, **kwargs):
        """Base implementation of image to SVG generation"""
        inputs_embeds, attention_mask, prompt_tokens = self._prepare_generation_inputs(
            batch, kwargs.get('prompt'), batch["image"].device
        )
        
        generation_kwargs = self._get_generation_kwargs(
            {**kwargs, 'inputs_embeds': inputs_embeds, 'attention_mask': attention_mask}
        )
        # Let subclasses override these defaults if needed
        generation_kwargs.update(self._get_im2svg_specific_kwargs(kwargs))
        
        outputs = self.svg_transformer.transformer.generate(**generation_kwargs)
        outputs = torch.cat([prompt_tokens.input_ids, outputs], dim=1)
        raw_svg = self.svg_transformer.tokenizer.batch_decode(outputs, skip_special_tokens=True)

        return raw_svg

    def generate_im2svg_grpo(self, batch, **kwargs):
        """Base implementation of image to SVG generation"""
        inputs_embeds, attention_mask, prompt_tokens = self._prepare_generation_inputs(
            batch, kwargs.get('prompt'), batch["image"].device
        )
        
        generation_kwargs = self._get_generation_kwargs(
            {**kwargs, 'inputs_embeds': inputs_embeds, 'attention_mask': attention_mask}
        )
        # Let subclasses override these defaults if needed
        generation_kwargs.update(self._get_im2svg_specific_kwargs(kwargs))

        num_return_sequences = kwargs.get('num_return_sequences', 1)
        if num_return_sequences > 1:
            generation_kwargs['num_return_sequences'] = num_return_sequences
            generation_kwargs['num_beams'] = 1

        outputs = self.svg_transformer.transformer.generate(**generation_kwargs)
        outputs = torch.cat([prompt_tokens.input_ids.repeat(num_return_sequences, 1), outputs], dim=1)
        raw_svg = self.svg_transformer.tokenizer.batch_decode(outputs, skip_special_tokens=True)

        return {
            "raw_svg": raw_svg,
            "outputs": outputs,
            "inputs_embeds": inputs_embeds,
        }
        
    
    def _get_im2svg_specific_kwargs(self, kwargs):
        """Default implementation of im2svg specific generation kwargs.
        Subclasses can override this to customize generation behavior."""
        return {
            'early_stopping': True,
            'pad_token_id': self.svg_transformer.tokenizer.pad_token_id
        }

    def generate_text2svg(self, batch, **kwargs):
        """Base implementation of text to SVG generation"""
        device = batch["image"].device
        prompt = batch["caption"]
        
        prompt_tokens = self._tokenize(
            prompt,
            max_length=kwargs.get('max_length', 30),
            device=device,
            add_special_tokens=False
        )
        
        trigger_token = self._tokenize(
            [self.svg_transformer.svg_start_token for _ in batch["caption"]],
            max_length=None,
            device=device,
            add_special_tokens=False
        )
        
        input_tokens = torch.cat([prompt_tokens.input_ids, trigger_token.input_ids], dim=1)
        attention_mask = torch.cat([prompt_tokens.attention_mask, trigger_token.attention_mask], dim=1)
        inputs_embeds = self._get_embeddings(input_tokens)
        max_length = kwargs.get('max_length', 30) - input_tokens.size(1)

        generation_kwargs = self._get_generation_kwargs(
            {**kwargs, 'inputs_embeds': inputs_embeds, 'attention_mask': attention_mask},
            input_tokens.size(1)
        )
        # Let subclasses override these defaults if needed
        generation_kwargs.update(self._get_text2svg_specific_kwargs(kwargs))
        generation_kwargs['max_length'] = max_length
        
        outputs = self.svg_transformer.transformer.generate(**generation_kwargs)
        return outputs

    def _get_text2svg_specific_kwargs(self, kwargs):
        """Default implementation of text2svg specific generation kwargs.
        Subclasses can override this to customize generation behavior."""
        return {
            'eos_token_id': self.svg_transformer.tokenizer.eos_token_id,
            'early_stopping': True,
            'length_penalty': kwargs.get('length_penalty', 1.0)
        }