File size: 11,283 Bytes
72f684c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
import os
from starvector.util import (
    set_env_vars,
    flatten_dict,
    get_exp_id, 
    instantiate_from_config, 
    generate_id_name_eval, 
    get_last_checkpoint, 
    model_summary_table, 
    copy_code,
    )
# set_env_vars()
from starvector.train.util import (
    save_checkpoint,
    get_optimizer,
    init_distributed_mode,
    setup_train_env_variables,
    load_fsdp_plugin,
    apply_gradient_checkpointing,
)
import logging
import math
from torch.utils.data import DataLoader
from transformers import get_scheduler
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import ProjectConfiguration
from tqdm.auto import tqdm
from omegaconf import OmegaConf
import os
import time
from starvector.metrics.util import AverageMeter
from util import save_checkpoint, get_optimizer
from starvector.util import get_output_dir
from starvector.model.builder import model_builder
from safetensors.torch import load_file as load_safetensors
from starvector.util import get_config
import torch

from starvector.train.util import load_checkpoint, is_deepspeed, consolidate_deepspeed_checkpoint
logger = get_logger(__name__, log_level="INFO")

def validate(model, dataloader, accelerator):
    loss_meter = AverageMeter()
    model.eval()
    pbar = tqdm(total=len(dataloader), ncols=100, desc="Processing", disable=not accelerator.is_local_main_process)
    with torch.no_grad():
        for i, batch in enumerate(dataloader):
            batch_size = len(batch["image"])
            loss = model(batch)
            loss_meter.update(loss.detach().item(), batch_size)
            pbar.update(1)

    val_loss = (
        accelerator.gather(torch.tensor(loss_meter.avg).to(accelerator.device))
        .float()
        .mean()
        .item()
    )

    accelerator.wait_for_everyone()
    pbar.close()

    return val_loss

def main(config=None):
    print(f"Experiment config: {config}")
    set_env_vars()

    exp_id = get_exp_id(config)
    output_dir = get_output_dir()
    logging_dir = os.path.join(output_dir, config.data.train.params.dataset_name, exp_id)

    if os.path.exists(logging_dir) and not config.training.resume_from_checkpoint:
        config.training.resume_from_checkpoint = get_last_checkpoint(logging_dir)
        config.training.continue_training = True 
            
    # Flatten config dict for logging it
    log_config = flatten_dict(OmegaConf.to_container(config, resolve=True))
    log_config['logging_dir'] = logging_dir # Add logging dir to config

    if config.fsdp.enable:
        init_distributed_mode(config)
        setup_train_env_variables(config)

    # --------------- Datasets ---------------
    train_dataset = instantiate_from_config(config.data.train)
    test_dataset = instantiate_from_config(config.data.test)
    train_dataloader = DataLoader(train_dataset, batch_size=config.data.train.batch_size, shuffle=True, num_workers=config.data.num_workers, pin_memory=True)
    test_dataloader = DataLoader(test_dataset, batch_size=config.data.test.batch_size, shuffle=False, num_workers=config.data.num_workers, pin_memory=True)
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / config.training.gradient_accumulation_steps)
    max_train_steps = config.training.n_epochs * num_update_steps_per_epoch

    global_step = 0
    first_epoch = 0

    model = model_builder(config)
    
    # Instantiate the model, fsdp and accelerator
    if config.training.resume_from_checkpoint:
        if not config.fsdp.enable:
            if is_deepspeed(config.training.resume_from_checkpoint):
                if accelerator.is_main_process:
                    consolidate_deepspeed_checkpoint(config.training.resume_from_checkpoint)
                accelerator.wait_for_everyone()
            model = load_checkpoint(model, config.training.resume_from_checkpoint)
        else: 
            model.load_state_dict(torch.load(os.path.join(config.training.resume_from_checkpoint, "pytorch_model_fsdp.bin")), strict=False)
        if config.training.continue_training:
            global_step = int(os.path.basename(config.training.resume_from_checkpoint).split("-")[1])
            resume_global_step = global_step * config.training.gradient_accumulation_steps
            first_epoch = global_step // num_update_steps_per_epoch
            resume_step = resume_global_step % (num_update_steps_per_epoch * config.training.gradient_accumulation_steps)
        else:
            global_step = 0
            first_epoch = 0
            resume_step = 0
            print("Loaded checkpoint but not updating global step")
    
    if config.fsdp.enable:
        fsdp_plugin = load_fsdp_plugin(config, model)
    else:
        fsdp_plugin = None

    # Define accelerator
    kwargs_handler = None
    accelerator = Accelerator(
        gradient_accumulation_steps=config.training.gradient_accumulation_steps,
        mixed_precision=config.training.model_precision,
        log_with="wandb" if config.project.use_wandb else None,
        project_dir=logging_dir,
        project_config=ProjectConfiguration(logging_dir=logging_dir),
        step_scheduler_with_optimizer=False,
        fsdp_plugin=fsdp_plugin,
        kwargs_handlers=kwargs_handler
    )

    # --------------- Logging ---------------
    if accelerator.is_main_process:
        if config.project.use_wandb:
            import wandb
            wandb.init(name=exp_id, project=config.project.project, entity=config.project.entity, config=log_config)
            accelerator.init_trackers(
                project_name=config.project.project,
            )
            config.project.wandb_run_id = wandb.run.id
        else:
            run = os.path.split(__file__)[-1].split(".")[0]
            accelerator.init_trackers(run)

        if logging_dir is not None:
            os.makedirs(logging_dir, exist_ok=True)

        # Copy code and dependency versions
        if config.project.copy_code:
            out_dir = os.path.join(logging_dir, "code")
            copy_code(os.path.join(os.path.dirname(__file__), "..", ".."), out_dir)

    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    logger.info(accelerator.state, main_process_only=True)
    
    total_batch_size = config.data.train.batch_size * accelerator.num_processes * config.training.gradient_accumulation_steps

    if accelerator.is_main_process and config.project.use_wandb:
        wandb.log({"total_batch_size": total_batch_size})
        wandb.log({"num_update_steps_per_epoch": num_update_steps_per_epoch})
        wandb.log({"max_train_steps": max_train_steps})

    # accelerate prepare model
    model = accelerator.prepare(model)
    
    # activation/gradient checkpointing
    if config.training.use_gradient_checkpointing:
        print("apply gradient checkpointing")
        model = apply_gradient_checkpointing(model)

    optimizer = get_optimizer(config, model)

    if accelerator.is_main_process:
        print("Train dataset length: ", len(train_dataset))
        print("Test dataset length: ", len(test_dataset))

    # --------------- Training config ---------------
    lr_scheduler = get_scheduler(
        config.training.lr_scheduler,
        optimizer=optimizer,
        num_warmup_steps=config.training.lr_warmup_steps * config.training.gradient_accumulation_steps,
        num_training_steps= (len(train_dataloader) * config.training.n_epochs),
    )
    
    optimizer, train_dataloader, test_dataloader, lr_scheduler = accelerator.prepare(
        optimizer, train_dataloader, test_dataloader, lr_scheduler
    )
        
    loss_meter = AverageMeter()

    if accelerator.is_main_process:    
        model_summary_table(model)  

        if not os.path.exists(os.path.join(logging_dir, 'config.yaml')):
            with open(os.path.join(logging_dir, 'config.yaml'), 'w') as f:
                OmegaConf.save(config, f)

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {len(train_dataset)}")
    logger.info(f"  Num Epochs = {config.training.n_epochs}")
    logger.info(f"  Instantaneous batch size per device = {config.data.train.batch_size}")
    logger.info(f"  Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
    logger.info(f"  Gradient Accumulation steps = {config.training.gradient_accumulation_steps}")
    logger.info(f"  Total optimization steps = {max_train_steps}")

    # --------------- Generation/Validation arguments ---------------
    generation_args = config.generation

    # Need to set some experiment specific arguments
    generation_args.project_name = config.project.project
    generation_args.use_wandb = config.project.use_wandb
    generation_args.id = generate_id_name_eval(generation_args)
    generation_args.out_path = os.path.join(logging_dir, generation_args.id)
    generation_args.start_generation_at_step = config.generation.start_generation_at_step
    generation_args.metrics = config.metrics    
    
    os.makedirs(generation_args.out_path, exist_ok=True)

    # --------------- Training loop ---------------
    total_steps = num_update_steps_per_epoch * config.training.n_epochs
    progress_bar = tqdm(total=total_steps, disable=not accelerator.is_local_main_process)
    progress_bar.set_description(f"Training Progress")

    for epoch in range(config.training.n_epochs):
        model.train()
        for step, batch in enumerate(train_dataloader):
            s_time = time.time()

            if config.training.resume_from_checkpoint and epoch == first_epoch and step < resume_step:
                if step % config.training.gradient_accumulation_steps == 0:
                    progress_bar.update(1)
                continue
            
            with accelerator.accumulate(model):
                loss = model(batch)
                accelerator.backward(loss)
                loss_meter.update(loss.detach().item(), batch['image'].shape[0])
                if accelerator.sync_gradients:
                    accelerator.clip_grad_norm_(model.parameters(), 1.0)
                optimizer.step()
                lr_scheduler.step()
                optimizer.zero_grad()
            if accelerator.sync_gradients:
                progress_bar.update(1)
                global_step += 1
                if global_step % config.training.checkpointing_steps == 0:
                    accelerator.wait_for_everyone()
                    val_loss = validate(model, test_dataloader, accelerator)
                    accelerator.log({"val_loss": val_loss}, step=global_step)
                    save_checkpoint(accelerator, model, global_step, logging_dir, config.training.checkpoints_total_limit)
                    model.train()   
            logs = {
                "loss": loss_meter.val, 
                "last_lr": lr_scheduler.get_last_lr()[0], 
                "step": global_step, 
                "step_time": time.time() - s_time,
                "epoch": epoch}
            progress_bar.set_postfix(**logs)
            accelerator.log(logs, step=global_step)
    
    accelerator.end_training()

if __name__ == "__main__":
    main(config=get_config())