Spaces:
Running
Running
File size: 11,283 Bytes
72f684c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
import os
from starvector.util import (
set_env_vars,
flatten_dict,
get_exp_id,
instantiate_from_config,
generate_id_name_eval,
get_last_checkpoint,
model_summary_table,
copy_code,
)
# set_env_vars()
from starvector.train.util import (
save_checkpoint,
get_optimizer,
init_distributed_mode,
setup_train_env_variables,
load_fsdp_plugin,
apply_gradient_checkpointing,
)
import logging
import math
from torch.utils.data import DataLoader
from transformers import get_scheduler
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import ProjectConfiguration
from tqdm.auto import tqdm
from omegaconf import OmegaConf
import os
import time
from starvector.metrics.util import AverageMeter
from util import save_checkpoint, get_optimizer
from starvector.util import get_output_dir
from starvector.model.builder import model_builder
from safetensors.torch import load_file as load_safetensors
from starvector.util import get_config
import torch
from starvector.train.util import load_checkpoint, is_deepspeed, consolidate_deepspeed_checkpoint
logger = get_logger(__name__, log_level="INFO")
def validate(model, dataloader, accelerator):
loss_meter = AverageMeter()
model.eval()
pbar = tqdm(total=len(dataloader), ncols=100, desc="Processing", disable=not accelerator.is_local_main_process)
with torch.no_grad():
for i, batch in enumerate(dataloader):
batch_size = len(batch["image"])
loss = model(batch)
loss_meter.update(loss.detach().item(), batch_size)
pbar.update(1)
val_loss = (
accelerator.gather(torch.tensor(loss_meter.avg).to(accelerator.device))
.float()
.mean()
.item()
)
accelerator.wait_for_everyone()
pbar.close()
return val_loss
def main(config=None):
print(f"Experiment config: {config}")
set_env_vars()
exp_id = get_exp_id(config)
output_dir = get_output_dir()
logging_dir = os.path.join(output_dir, config.data.train.params.dataset_name, exp_id)
if os.path.exists(logging_dir) and not config.training.resume_from_checkpoint:
config.training.resume_from_checkpoint = get_last_checkpoint(logging_dir)
config.training.continue_training = True
# Flatten config dict for logging it
log_config = flatten_dict(OmegaConf.to_container(config, resolve=True))
log_config['logging_dir'] = logging_dir # Add logging dir to config
if config.fsdp.enable:
init_distributed_mode(config)
setup_train_env_variables(config)
# --------------- Datasets ---------------
train_dataset = instantiate_from_config(config.data.train)
test_dataset = instantiate_from_config(config.data.test)
train_dataloader = DataLoader(train_dataset, batch_size=config.data.train.batch_size, shuffle=True, num_workers=config.data.num_workers, pin_memory=True)
test_dataloader = DataLoader(test_dataset, batch_size=config.data.test.batch_size, shuffle=False, num_workers=config.data.num_workers, pin_memory=True)
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / config.training.gradient_accumulation_steps)
max_train_steps = config.training.n_epochs * num_update_steps_per_epoch
global_step = 0
first_epoch = 0
model = model_builder(config)
# Instantiate the model, fsdp and accelerator
if config.training.resume_from_checkpoint:
if not config.fsdp.enable:
if is_deepspeed(config.training.resume_from_checkpoint):
if accelerator.is_main_process:
consolidate_deepspeed_checkpoint(config.training.resume_from_checkpoint)
accelerator.wait_for_everyone()
model = load_checkpoint(model, config.training.resume_from_checkpoint)
else:
model.load_state_dict(torch.load(os.path.join(config.training.resume_from_checkpoint, "pytorch_model_fsdp.bin")), strict=False)
if config.training.continue_training:
global_step = int(os.path.basename(config.training.resume_from_checkpoint).split("-")[1])
resume_global_step = global_step * config.training.gradient_accumulation_steps
first_epoch = global_step // num_update_steps_per_epoch
resume_step = resume_global_step % (num_update_steps_per_epoch * config.training.gradient_accumulation_steps)
else:
global_step = 0
first_epoch = 0
resume_step = 0
print("Loaded checkpoint but not updating global step")
if config.fsdp.enable:
fsdp_plugin = load_fsdp_plugin(config, model)
else:
fsdp_plugin = None
# Define accelerator
kwargs_handler = None
accelerator = Accelerator(
gradient_accumulation_steps=config.training.gradient_accumulation_steps,
mixed_precision=config.training.model_precision,
log_with="wandb" if config.project.use_wandb else None,
project_dir=logging_dir,
project_config=ProjectConfiguration(logging_dir=logging_dir),
step_scheduler_with_optimizer=False,
fsdp_plugin=fsdp_plugin,
kwargs_handlers=kwargs_handler
)
# --------------- Logging ---------------
if accelerator.is_main_process:
if config.project.use_wandb:
import wandb
wandb.init(name=exp_id, project=config.project.project, entity=config.project.entity, config=log_config)
accelerator.init_trackers(
project_name=config.project.project,
)
config.project.wandb_run_id = wandb.run.id
else:
run = os.path.split(__file__)[-1].split(".")[0]
accelerator.init_trackers(run)
if logging_dir is not None:
os.makedirs(logging_dir, exist_ok=True)
# Copy code and dependency versions
if config.project.copy_code:
out_dir = os.path.join(logging_dir, "code")
copy_code(os.path.join(os.path.dirname(__file__), "..", ".."), out_dir)
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(accelerator.state, main_process_only=True)
total_batch_size = config.data.train.batch_size * accelerator.num_processes * config.training.gradient_accumulation_steps
if accelerator.is_main_process and config.project.use_wandb:
wandb.log({"total_batch_size": total_batch_size})
wandb.log({"num_update_steps_per_epoch": num_update_steps_per_epoch})
wandb.log({"max_train_steps": max_train_steps})
# accelerate prepare model
model = accelerator.prepare(model)
# activation/gradient checkpointing
if config.training.use_gradient_checkpointing:
print("apply gradient checkpointing")
model = apply_gradient_checkpointing(model)
optimizer = get_optimizer(config, model)
if accelerator.is_main_process:
print("Train dataset length: ", len(train_dataset))
print("Test dataset length: ", len(test_dataset))
# --------------- Training config ---------------
lr_scheduler = get_scheduler(
config.training.lr_scheduler,
optimizer=optimizer,
num_warmup_steps=config.training.lr_warmup_steps * config.training.gradient_accumulation_steps,
num_training_steps= (len(train_dataloader) * config.training.n_epochs),
)
optimizer, train_dataloader, test_dataloader, lr_scheduler = accelerator.prepare(
optimizer, train_dataloader, test_dataloader, lr_scheduler
)
loss_meter = AverageMeter()
if accelerator.is_main_process:
model_summary_table(model)
if not os.path.exists(os.path.join(logging_dir, 'config.yaml')):
with open(os.path.join(logging_dir, 'config.yaml'), 'w') as f:
OmegaConf.save(config, f)
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num Epochs = {config.training.n_epochs}")
logger.info(f" Instantaneous batch size per device = {config.data.train.batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logger.info(f" Gradient Accumulation steps = {config.training.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {max_train_steps}")
# --------------- Generation/Validation arguments ---------------
generation_args = config.generation
# Need to set some experiment specific arguments
generation_args.project_name = config.project.project
generation_args.use_wandb = config.project.use_wandb
generation_args.id = generate_id_name_eval(generation_args)
generation_args.out_path = os.path.join(logging_dir, generation_args.id)
generation_args.start_generation_at_step = config.generation.start_generation_at_step
generation_args.metrics = config.metrics
os.makedirs(generation_args.out_path, exist_ok=True)
# --------------- Training loop ---------------
total_steps = num_update_steps_per_epoch * config.training.n_epochs
progress_bar = tqdm(total=total_steps, disable=not accelerator.is_local_main_process)
progress_bar.set_description(f"Training Progress")
for epoch in range(config.training.n_epochs):
model.train()
for step, batch in enumerate(train_dataloader):
s_time = time.time()
if config.training.resume_from_checkpoint and epoch == first_epoch and step < resume_step:
if step % config.training.gradient_accumulation_steps == 0:
progress_bar.update(1)
continue
with accelerator.accumulate(model):
loss = model(batch)
accelerator.backward(loss)
loss_meter.update(loss.detach().item(), batch['image'].shape[0])
if accelerator.sync_gradients:
accelerator.clip_grad_norm_(model.parameters(), 1.0)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
if accelerator.sync_gradients:
progress_bar.update(1)
global_step += 1
if global_step % config.training.checkpointing_steps == 0:
accelerator.wait_for_everyone()
val_loss = validate(model, test_dataloader, accelerator)
accelerator.log({"val_loss": val_loss}, step=global_step)
save_checkpoint(accelerator, model, global_step, logging_dir, config.training.checkpoints_total_limit)
model.train()
logs = {
"loss": loss_meter.val,
"last_lr": lr_scheduler.get_last_lr()[0],
"step": global_step,
"step_time": time.time() - s_time,
"epoch": epoch}
progress_bar.set_postfix(**logs)
accelerator.log(logs, step=global_step)
accelerator.end_training()
if __name__ == "__main__":
main(config=get_config()) |