Spaces:
Running
Running
File size: 10,089 Bytes
72f684c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
import os
import importlib
import hashlib
import re
import time
import subprocess
import logging
import shlex
import os
import shutil
import fnmatch
from huggingface_hub import login
import torch
from omegaconf import OmegaConf
dtype_mapping = {
"fp16": torch.float16,
"bf16": torch.bfloat16,
"fp32": torch.float32,
"no": "no"
}
# -------------- Metrics --------------
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def count_parameters(model):
num = sum(p.numel() for p in model.parameters() if p.requires_grad)
for unit in ['', 'K', 'M', 'B', 'T']:
if abs(num) < 1000:
return f"{num:.1f}{unit}"
num /= 1000
return f"{num:.1f}P"
def print_trainable_parameters(model):
"""
Prints the number of trainable parameters in the model.
"""
trainable_params = 0
all_param = 0
for _, param in model.named_parameters():
all_param += param.numel()
if param.requires_grad:
trainable_params += param.numel()
print(
f"trainable params: {trainable_params} || all params: {all_param} || trainable%: {100 * trainable_params / all_param}"
)
def set_env_vars():
HF_HOME = os.environ['HF_HOME']
if HF_HOME is None:
raise EnvironmentError("HF_HOME environment variable is not defined.")
os.makedirs(HF_HOME, exist_ok=True)
# os.environ['TRANSFORMERS_CACHE'] = HF_HOME
os.environ['HUGGINGFACE_HUB_CACHE'] = HF_HOME
os.environ['TORCH_HOME'] = HF_HOME
os.environ['HF_HOME'] = HF_HOME
os.environ['HF_HUB_CACHE'] = HF_HOME
os.environ['PYDEVD_DISABLE_FILE_VALIDATION'] = '1'
os.environ['TOKENIZERS_PARALLELISM']="False"
os.environ['TORCH_DISTRIBUTED_DEBUG'] = 'INFO'
os.environ['CUDA_LAUNCH_BLOCKING'] = "1"
HF_TOKEN = os.environ['HF_TOKEN']
if HF_TOKEN is None:
raise EnvironmentError("HF_TOKEN environment variable is not defined.")
time.sleep(1) # wait for the token to be saved
login(HF_TOKEN)
def flatten_dict(d, parent_key='', sep='.'):
items = []
for k, v in d.items():
new_key = f"{parent_key}{sep}{k}" if parent_key else k
if isinstance(v, dict):
items.extend(flatten_dict(v, new_key, sep=sep).items())
else:
items.append((new_key, v))
return dict(items)
def hash_dict(exp_dict):
"""Create a hash for an experiment. Credtts to github.com/haven-ai!
Parameters
----------
exp_dict : dict
An experiment, which is a single set of hyper-parameters
Returns
-------
hash_id: str
A unique id defining the experiment
"""
dict2hash = ""
if not isinstance(exp_dict, dict):
raise ValueError("exp_dict is not a dict")
for k in sorted(exp_dict.keys()):
if "." in k:
raise ValueError(". has special purpose")
elif isinstance(exp_dict[k], dict):
v = hash_dict(exp_dict[k])
elif isinstance(exp_dict[k], tuple):
raise ValueError(f"{exp_dict[k]} tuples can't be hashed yet, consider converting tuples to lists")
elif isinstance(exp_dict[k], list) and len(exp_dict[k]) and isinstance(exp_dict[k][0], dict):
v_str = ""
for e in exp_dict[k]:
if isinstance(e, dict):
v_str += hash_dict(e)
else:
raise ValueError("all have to be dicts")
v = v_str
else:
v = exp_dict[k]
dict2hash += str(k) + "/" + str(v)
hash_id = hashlib.md5(dict2hash.encode()).hexdigest()
return hash_id
def get_exp_id(config):
exp_hash_id = hash_dict(dict(config))
if config.model.model_name is not None:
model_name = config.model.model_name.split("/")[1]
else:
model_name = config.model.starcoder_model_name.split("/")[1] + "_" + config.model.image_encoder_type
exp_id = f"{config.project.project}-{config.model.max_length}-{model_name}-{exp_hash_id}"
print("\n" + "Experiment ID: " + exp_id + "\n")
return exp_id
def get_obj_from_str(string, reload=False):
module, cls = string.rsplit(".", 1)
if reload:
module_imp = importlib.import_module(module)
importlib.reload(module_imp)
return getattr(importlib.import_module(module, package=None), cls)
def instantiate_from_config(config):
if not "target" in config:
raise KeyError("No target in config")
return get_obj_from_str(config["target"])(**config.get("params", dict()))
def generate_id_name_eval(args):
id_name = f"len_{args.max_length}"
if args.use_nucleus_sampling:
id_name += "_nucleus"
id_name += f"_top_p_{args.top_p:.2f}"
if args.num_beams > 1:
id_name += "_beam_search"
id_name += f"_beams_{args.num_beams}"
else:
if not args.use_nucleus_sampling:
id_name += "_greedy"
id_name += f"_rep_pen_{args.repetition_penalty:.2f}"
id_name += f"_len_pen_{args.length_penalty:.2f}"
id_name += f"_temp_{args.temperature:.2f}"
return id_name
def get_last_checkpoint(log_dir):
"""Get the last checkpoint.
Returns
-------
last_checkpoint: str
The last checkpoint
"""
pattern = re.compile(r"checkpoint-(\d+)")
files = os.listdir(log_dir)
checkpoints = [f for f in files if pattern.match(f)]
if len(checkpoints) == 0:
return None
steps = [int(pattern.match(c).group(1)) for c in checkpoints]
max_step = max(steps)
last_checkpoint = f"checkpoint-{max_step}"
return os.path.join(log_dir, last_checkpoint)
def model_summary_table(model):
total_params = 0
name_col_width = 20 # set the width of the name column
print("\n")
print(f"| {'Submodel Name'.ljust(name_col_width)} | Number of Parameters |")
print("|" + "-" * name_col_width + "|---------------------|")
for name, module in model.named_children():
num_params = sum(p.numel() for p in module.parameters())
total_params += num_params
print(f"| {name.ljust(name_col_width)} | {num_params:>20,} |")
print("|" + "-" * name_col_width + "|---------------------|")
print(f"| {'Total'.ljust(name_col_width)} | {total_params:>20,} |")
print("\n")
def checkpoint_key(checkpoint_dir):
return int(checkpoint_dir.split("-")[-1])
def subprocess_call(cmd_string):
"""Run a terminal process.
Parameters
----------
cmd_string : str
Command to execute in the terminal
Returns
-------
[type]
Error code or 0 if no error happened
"""
return subprocess.check_output(shlex.split(cmd_string), shell=False, stderr=subprocess.STDOUT).decode("utf-8")
def copy_code(
src_path,
dst_path,
verbose=1,
exclude_list=['__pycache__', 'wandb', '.vscode', '.ipynb_checkpoints', 'project_baselines', 'assets', 'tmp']):
time.sleep(0.5)
if verbose:
print(" > Copying code from %s to %s" % (src_path, dst_path))
os.makedirs(dst_path, exist_ok=True)
rsync_avialable = len(subprocess.run(['which', 'rsync'], capture_output=True, text=True).stdout) > 0
if rsync_avialable: # TODO: validate this works
rsync_cmd_base = f"rsync -av -r -q --delete-before --exclude='.*' --exclude '__pycache__/'"
exclude_options = " ".join([f"--exclude='{filename}'" for filename in exclude_list])
rsync_cmd = f"{rsync_cmd_base} {exclude_options} {src_path} {dst_path}"
if os.path.exists(os.path.join(src_path, ".havenignore")):
rsync_cmd += f" --exclude-from={os.path.join(src_path, '.havenignore')}"
copy_code_cmd = rsync_cmd
subprocess_call(copy_code_cmd)
else:
logging.warning("rsync not available. Doing a hard copy of the code folder.")
for dirpath, dirs, files in os.walk(src_path):
if any(ex in dirpath for ex in exclude_list):
continue
for filename in fnmatch.filter(files, '*'):
src_file = os.path.join(dirpath, filename)
dst_file = os.path.join(dst_path, src_file.replace(src_path+'/', ''))
if src_file == dst_file:
continue
dst_dir = os.path.dirname(dst_file)
if not os.path.exists(dst_dir):
os.makedirs(dst_dir, exist_ok=True)
if not os.path.isfile(dst_file): # check if destination is already a file
shutil.copy2(src_file, dst_file)
time.sleep(0.5)
def get_output_dir():
# get the environment variable if it exists
output_dir = os.environ.get("OUTPUT_DIR", None)
if output_dir is None:
output_dir = os.path.join(os.getcwd(), "logs")
return output_dir
def get_config():
base_conf = OmegaConf.load("configs/models/default.yaml")
cli_conf = OmegaConf.from_cli()
specific_conf = OmegaConf.load(cli_conf.pop('config')) if 'config' in cli_conf else {}
config = OmegaConf.merge(base_conf, specific_conf, cli_conf)
if config.training.resume_from_checkpoint:
if not os.path.exists(os.path.join(os.path.dirname(config.training.resume_from_checkpoint), 'config.yaml')):
config.training.resume_from_checkpoint = get_last_checkpoint(config.training.resume_from_checkpoint)
cli_conf.training.resume_from_checkpoint = config.training.resume_from_checkpoint
pretrained_conf = OmegaConf.load(os.path.join(os.path.dirname(config.training.resume_from_checkpoint), 'config.yaml'))
model_resume_conf = pretrained_conf.pop('model')
specific_conf['model'] = model_resume_conf
config = OmegaConf.merge(config, specific_conf, cli_conf)
return config |