File size: 18,657 Bytes
72f684c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
from abc import ABC, abstractmethod
import os
import json
import pandas as pd
from starvector.metrics.metrics import SVGMetrics
from copy import deepcopy
import numpy as np
from starvector.data.util import rasterize_svg
import importlib
from typing import Type
from omegaconf import OmegaConf
from tqdm import tqdm   
from datetime import datetime
import re
from starvector.data.util import clean_svg, use_placeholder
from svgpathtools import svgstr2paths

# Registry for SVGValidator subclasses
validator_registry = {}

def register_validator(cls: Type['SVGValidator']):
    """
    Decorator to register SVGValidator subclasses.
    """
    validator_registry[cls.__name__] = cls
    return cls

class SVGValidator(ABC):
    def __init__(self, config):
        self.task = config.model.task
        # Flag to determine if we should report to wandb
        self.report_to_wandb = config.run.report_to == 'wandb'
        date_time = datetime.now().strftime("%Y%m%d_%H%M%S")

        if config.model.from_checkpoint:
            chkp_dir = self.get_checkpoint_dir(config.model.from_checkpoint)
            config.model.from_checkpoint = chkp_dir
            self.resume_from_checkpoint = chkp_dir
            self.out_dir = chkp_dir + '/' + config.run.out_dir + '/' + config.model.generation_engine + '_' + config.dataset.dataset_name + '_' + date_time
        else:
            self.out_dir = config.run.out_dir + '/' + config.model.generation_engine + '_' + config.model.name + '_' + config.dataset.dataset_name + '_' + date_time
        os.makedirs(self.out_dir, exist_ok=True)
        self.model_name = config.model.name
        # Save config to yaml file
        config_path = os.path.join(self.out_dir, "config.yaml")
        self.config = config
        with open(config_path, "w") as f:
            OmegaConf.save(config=self.config, f=f)

        print(f"Out dir: {self.out_dir}")
        os.makedirs(self.out_dir, exist_ok=True)
        
        metrics_config_path = f"configs/metrics/{self.task}.yaml"
        default_metrics_config = OmegaConf.load(metrics_config_path)
        self.metrics = SVGMetrics(default_metrics_config['metrics'])
        self.results = {}

        # If wandb reporting is enabled, initialize wandb and a table to record sample results.
        if self.report_to_wandb:
            try:
                import wandb
                wandb.init(
                    project=config.run.project_name,
                    name=config.run.run_id,
                    config=OmegaConf.to_container(config, resolve=True)
                )
                # Create a wandb table with columns for all relevant data.
                self.results_table = wandb.Table(columns=[
                    "sample_id", "svg", "svg_raw", "svg_gt",
                    "no_compile", "post_processed", "original_image", "generated_image",
                    "comparison_image"
                ])
                # Dictionary to hold table rows indexed by sample_id
                self.table_data = {}
                print("Initialized wandb run with results table")
            except Exception as e:
                print(f"Failed to initialize wandb: {e}")

    def get_checkpoint_dir(self, checkpoint_path):
        """Get the directory of a checkpoint by name, returning the one with the highest step."""

        if re.search(r'checkpoint-\d+$', checkpoint_path):
            return checkpoint_path

        # Find all directories matching the checkpoint pattern
        checkpoint_dirs = []
        for d in os.listdir(checkpoint_path):
            if re.search(r'checkpoint-(\d+)$', d):
                checkpoint_dirs.append(d)
        
        if not checkpoint_dirs:
            return None
            
        # Extract step numbers and find the highest one
        latest_dir = max(checkpoint_dirs, key=lambda x: int(re.search(r'checkpoint-(\d+)$', x).group(1)))
        return os.path.join(checkpoint_path, latest_dir)

    def _hash_config(self, config):
        """Create a deterministic hash of the config for caching/identification."""
        import json
        import hashlib
        
        # Convert OmegaConf to dict and sort it for deterministic serialization
        config_dict = OmegaConf.to_container(config, resolve=True)
        
        # Remove non-deterministic or irrelevant fields
        if 'run' in config_dict:
            config_dict['run'].pop('out_dir', None)  # Remove output directory
            config_dict['run'].pop('device', None)   # Remove device specification
        
        # Convert to sorted JSON string
        config_str = json.dumps(config_dict, sort_keys=True)
        
        # Create hash
        return hashlib.md5(config_str.encode()).hexdigest()

    @abstractmethod
    def generate_svg(self, batch):
        """Generate SVG from batch data"""
        pass
    
    @abstractmethod
    def post_process_svg(self, generated_output):
        """Post-process generated SVG"""
        pass


    def create_comparison_plot(self, sample_id, gt_raster, gen_raster, metrics, output_path):
        """
        Creates and saves a comparison plot showing the ground truth and generated SVG images, along with computed metrics.
        
        Args:
            sample_id (str): Identifier for the sample.
            gt_raster (PIL.Image.Image): Rasterized ground truth SVG image.
            gen_raster (PIL.Image.Image): Rasterized generated SVG image.
            metrics (dict): Dictionary of metric names and their values.
            output_path (str): File path where the plot is saved.
            
        Returns:
            PIL.Image.Image: The generated comparison plot image.
        """
        import matplotlib.pyplot as plt
        import numpy as np
        from io import BytesIO
        from PIL import Image

        # Create figure with two subplots: one for metrics text, one for the images
        fig, (ax_metrics, ax_images) = plt.subplots(2, 1, figsize=(12, 8), gridspec_kw={'height_ratios': [1, 4]})
        fig.suptitle(f'Generation Results for {sample_id}', fontsize=16)

        # Build text for metrics
        if metrics:
            metrics_text = "Metrics:\n"
            for key, val in metrics.items():
                if isinstance(val, list) and val:
                    metrics_text += f"{key}: {val[-1]:.4f}\n"
                elif isinstance(val, (int, float)):
                    metrics_text += f"{key}: {val:.4f}\n"
                else:
                    metrics_text += f"{key}: {val}\n"
        else:
            metrics_text = "No metrics available."
        
        # Add metrics text in the upper subplot
        ax_metrics.text(0.5, 0.5, metrics_text, fontfamily='monospace',
                        horizontalalignment='center', verticalalignment='center')
        ax_metrics.axis('off')

        # Set title and prepare the images subplot
        ax_images.set_title('Ground Truth (left) vs Generated (right)')
        gt_array = np.array(gt_raster)
        gen_array = np.array(gen_raster)
        combined = np.hstack((gt_array, gen_array))
        ax_images.imshow(combined)
        ax_images.axis('off')

        # Save figure to buffer and file path
        buf = BytesIO()
        plt.savefig(buf, format='png', bbox_inches='tight', dpi=300)
        plt.savefig(output_path, format='png', bbox_inches='tight', dpi=300)
        plt.close(fig)
        buf.seek(0)
        return Image.open(buf)
    
    def create_comparison_plots_with_metrics(self, all_metrics):
        """
        Create and save comparison plots with metrics for all samples based on computed metrics.
        """
        for sample_id, metrics in all_metrics.items():
            if sample_id not in self.results:
                continue  # Skip if the sample does not exist in the results
            
            result = self.results[sample_id]
            sample_dir = os.path.join(self.out_dir, sample_id)
            
            # Retrieve the already rasterized images from the result
            gt_raster = result.get('gt_im')
            gen_raster = result.get('gen_im')
            if gt_raster is None or gen_raster is None:
                continue
            
            # Define the output path for the comparison plot image
            output_path = os.path.join(sample_dir, f"{sample_id}_comparison.png")
            comp_img = self.create_comparison_plot(sample_id, gt_raster, gen_raster, metrics, output_path)
            
            # Save the generated plot image in the result for later use
            result['comparison_image'] = comp_img

            # Also update the row in the internal table_data with the comparison image.
            if self.report_to_wandb and sample_id in self.table_data and self.config.run.log_images:
                import wandb
                row = list(self.table_data[sample_id])
                row[-1] = wandb.Image(comp_img)
                self.table_data[sample_id] = tuple(row)
                self.update_results_table_log()

    def save_results(self, results, batch, batch_idx):
        """Save results from generation."""
        out_path = self.out_dir
        for i, sample in enumerate(batch['Svg']):
            sample_id = str(batch['Filename'][i]).split('.')[0]
            res = results[i]
            res['sample_id'] = sample_id
            res['gt_svg'] = sample
            
            sample_dir = os.path.join(out_path, sample_id)
            os.makedirs(sample_dir, exist_ok=True)
            
            # Save SVG files and rasterized images using the base class method
            svg_raster, gt_svg_raster = self._save_svg_files(sample_dir, sample_id, res)
            
            # Save metadata to disk
            with open(os.path.join(sample_dir, 'metadata.json'), 'w') as f:
                json.dump(res, f, indent=4, sort_keys=True)
            res['gen_im'] = svg_raster
            res['gt_im'] = gt_svg_raster

            self.results[sample_id] = res

            # Instead of logging individual sample fields directly, add an entry (row)
            # to the internal table_data with a placeholder for comparison_image.
            if self.report_to_wandb and self.config.run.log_images:
                import wandb
                row = (
                    sample_id,
                    res['svg'],
                    res['svg_raw'],
                    res['gt_svg'],
                    res['no_compile'],
                    res['post_processed'],
                    wandb.Image(gt_svg_raster),
                    wandb.Image(svg_raster),
                    None  # Placeholder for comparison_image
                )
                self.table_data[sample_id] = row
                self.update_results_table_log()
    
    def _save_svg_files(self, sample_dir, outpath_filename, res):
        """Save SVG files and rasterized images."""
        # Save SVG files
        with open(os.path.join(sample_dir, f"{outpath_filename}.svg"), 'w', encoding='utf-8') as f:
            f.write(res['svg'])
        with open(os.path.join(sample_dir, f"{outpath_filename}_raw.svg"), 'w', encoding='utf-8') as f:
            f.write(res['svg_raw'])
        with open(os.path.join(sample_dir, f"{outpath_filename}_gt.svg"), 'w', encoding='utf-8') as f:
            f.write(res['gt_svg'])
        
        # Rasterize and save PNG
        svg_raster = rasterize_svg(res['svg'], resolution=512, dpi=100, scale=1)
        gt_svg_raster = rasterize_svg(res['gt_svg'], resolution=512, dpi=100, scale=1)
        svg_raster.save(os.path.join(sample_dir, f"{outpath_filename}_generated.png"))
        gt_svg_raster.save(os.path.join(sample_dir, f"{outpath_filename}_original.png"))
        
        return svg_raster, gt_svg_raster
    
    def run_temperature_sweep(self, batch):
        """Run generation with different temperatures"""
        out_dict = {}
        sampling_temperatures = np.linspace(
            self.config.generation_sweep.min_temperature, 
            self.config.generation_sweep.max_temperature, 
            self.config.generation_sweep.num_generations_different_temp
        ).tolist()
        
        for temp in sampling_temperatures:
            current_args = deepcopy(self.config.generation_params)
            current_args['temperature'] = temp
            results = self.generate_and_process_batch(batch, current_args)
            
            for i, sample_id in enumerate(batch['id']):
                sample_id = str(sample_id).split('.')[0]
                if sample_id not in out_dict:
                    out_dict[sample_id] = {}
                out_dict[sample_id][temp] = results[i]
        
        return out_dict
    
    def validate(self):
        """Main validation loop"""        
        for i, batch in enumerate(tqdm(self.dataloader, desc="Validating")):
            if self.config.generation_params.generation_sweep:
                results = self.run_temperature_sweep(batch)
            else:
                results = self.generate_and_process_batch(batch, self.config.generation_params)

            self.save_results(results, batch, i)

        self.release_memory()
        
        # Calculate and save metrics
        self.calculate_and_save_metrics()

        # Final logging of the complete results table.
        if self.report_to_wandb and self.config.run.log_images:
            try:
                import wandb
                wandb.log({"results_table": self.results_table})
            except Exception as e:
                print(f"Failed to log final results table to wandb: {e}")
    
    def calculate_and_save_metrics(self):
        """Calculate and save metrics"""
        batch_results = self.preprocess_results()
        avg_results, all_results = self.metrics.calculate_metrics(batch_results)
        
        out_path_results = os.path.join(self.out_dir, 'results')
        os.makedirs(out_path_results, exist_ok=True)
        
        # Save average results
        with open(os.path.join(out_path_results, 'results_avg.json'), 'w') as f:
            json.dump(avg_results, f, indent=4, sort_keys=True)        
        # Save detailed results
        df = pd.DataFrame.from_dict(all_results, orient='index')
        df.to_csv(os.path.join(out_path_results, 'all_results.csv'))
        
        # Log average metrics to wandb if enabled
        if self.report_to_wandb:
            try:
                import wandb
                wandb.log({'avg_metrics': avg_results})
            except Exception as e:
                print(f"Error logging average metrics to wandb: {e}")
        
        # Create comparison plots with metrics
        self.create_comparison_plots_with_metrics(all_results)
    
    def preprocess_results(self):
        """Preprocess results from self.results into batch format with lists"""
        batch = {
            'gen_svg': [],
            'gt_svg': [],
            'gen_im': [],
            'gt_im': [],
            'json': []
        }

        for sample_id, result_dict in self.results.items():
            # For single temperature case, result_dict contains one result
            # For temperature sweep, take first temperature's result
            if self.config.generation_params.generation_sweep:
                result = result_dict[list(result_dict.keys())[0]]
            else:
                result = result_dict

            batch['gen_svg'].append(result['svg'])
            batch['gt_svg'].append(result['gt_svg'])
            batch['gen_im'].append(result['gen_im'])
            batch['gt_im'].append(result['gt_im'])
            batch['json'].append(result)

        return batch
    
    def generate_and_process_batch(self, batch, generate_config):
        """Generate and post-process SVGs for a batch"""
        generated_outputs = self.generate_svg(batch, generate_config)
        processed_results = [self.post_process_svg(output) for output in generated_outputs]
        return processed_results


    def post_process_svg(self, text):
        """Post-process a single SVG text"""
        try:
            svgstr2paths(text)
            return {
                'svg': text,
                'svg_raw': text,
                'post_processed': False,
                'no_compile': False
            }
        except:
            try:
                cleaned_svg = clean_svg(text)
                svgstr2paths(cleaned_svg)
                return {
                    'svg': cleaned_svg,
                    'svg_raw': text,
                    'post_processed': True,
                    'no_compile': False
                }
            except:
                return {
                    'svg': use_placeholder(),
                    'svg_raw': text,
                    'post_processed': True,
                    'no_compile': True
                }
    

    @classmethod
    def get_validator(cls, key, args, validator_configs):
        """
        Factory method to get the appropriate SVGValidator subclass based on the key.

        Args:
            key (str): The key name to select the validator.
            args (argparse.Namespace): Parsed command-line arguments.
            validator_configs (dict): Mapping of validator keys to class paths.

        Returns:
            SVGValidator: An instance of a subclass of SVGValidator.

        Raises:
            ValueError: If the provided key is not in the mapping.
        """
        if key not in validator_configs:
            available_validators = list(validator_configs.keys())
            raise ValueError(f"Validator '{key}' is not recognized. Available validators: {available_validators}")
        
        class_path = validator_configs[key]
        module_path, class_name = class_path.rsplit('.', 1)
        module = importlib.import_module(module_path)
        validator_class = getattr(module, class_name)
        
        return validator_class(args)
    
    def update_results_table_log(self):
        """Rebuild and log the results table from self.table_data."""
        if self.report_to_wandb and self.config.run.log_images:
            try:
                import wandb
                table = wandb.Table(columns=[
                    "sample_id", "svg", "svg_raw", "svg_gt",
                    "no_compile", "post_processed",
                    "original_image", "generated_image", "comparison_image"
                ])
                for row in self.table_data.values():
                    table.add_data(*row)
                wandb.log({"results_table": table})
                self.results_table = table
            except Exception as e:
                print(f"Failed to update results table to wandb: {e}")