Spaces:
Running
Running
from transformers import ( | |
PretrainedConfig, | |
PreTrainedModel | |
) | |
from torch.nn import CrossEntropyLoss | |
from transformers.models.gpt_bigcode.modeling_gpt_bigcode import CausalLMOutputWithCrossAttentions | |
from typing import Optional, Tuple, Union | |
import torch | |
from transformers.processing_utils import ProcessorMixin | |
from torchvision import transforms | |
from torchvision.transforms.functional import InterpolationMode, pad | |
from transformers.feature_extraction_sequence_utils import BatchFeature | |
from transformers import AutoProcessor | |
class SimpleStarVectorProcessor(ProcessorMixin): | |
attributes = ["tokenizer"] # Only include tokenizer in attributes | |
valid_kwargs = ["size", "mean", "std"] # Add other parameters as valid kwargs | |
image_processor_class = "AutoImageProcessor" | |
tokenizer_class = "AutoTokenizer" | |
def __init__(self, | |
tokenizer=None, # Make tokenizer the first argument | |
size=224, | |
mean=None, | |
std=None, | |
**kwargs, | |
): | |
if mean is None: | |
mean = (0.48145466, 0.4578275, 0.40821073) | |
if std is None: | |
std = (0.26862954, 0.26130258, 0.27577711) | |
# Store these as instance variables | |
self.mean = mean | |
self.std = std | |
self.size = size | |
self.normalize = transforms.Normalize(mean=mean, std=std) | |
self.transform = transforms.Compose([ | |
transforms.Lambda(lambda img: img.convert("RGB") if img.mode == "RGBA" else img), | |
transforms.Lambda(lambda img: self._pad_to_square(img)), | |
transforms.Resize(size, interpolation=InterpolationMode.BICUBIC), | |
transforms.ToTensor(), | |
self.normalize | |
]) | |
# Initialize parent class with tokenizer | |
super().__init__(tokenizer=tokenizer) | |
def __call__(self, images=None, text=None, max_length=None, **kwargs) -> BatchFeature: | |
""" | |
Process images and/or text inputs. | |
Args: | |
images: Optional image input(s) | |
text: Optional text input(s) | |
**kwargs: Additional arguments | |
""" | |
if images is None and text is None: | |
raise ValueError("You have to specify at least one of `images` or `text`.") | |
image_inputs = {} | |
if images is not None: | |
if isinstance(images, (list, tuple)): | |
images_ = torch.stack([self.transform(img) for img in images]) | |
else: | |
images_ = self.transform(images) | |
image_inputs = {"pixel_values": images_} | |
text_inputs = {} | |
if text is not None: | |
text_inputs = self.tokenizer( | |
text, truncation=True, | |
add_special_tokens=True, | |
padding='longest', | |
max_length=max_length, | |
return_tensors="pt" | |
) | |
return BatchFeature(data={**text_inputs, **image_inputs}) | |
def _pad_to_square(self, img): | |
# Calculate padding to make the image square | |
width, height = img.size | |
max_dim = max(width, height) | |
padding = [(max_dim - width) // 2, (max_dim - height) // 2] | |
padding += [max_dim - width - padding[0], max_dim - height - padding[1]] | |
return pad(img, padding, fill=255) # Assuming white padding | |
AutoProcessor.register(SimpleStarVectorProcessor, SimpleStarVectorProcessor) | |
class StarVectorConfig(PretrainedConfig): | |
model_type = "starvector" | |
def __init__( | |
self, | |
starcoder_model_name: str = "bigcode/starcoderbase-1b", | |
image_encoder_type: str = "clip", | |
adapter_norm: str = "layer_norm", | |
image_size: int = 224, | |
max_length: int = 8192, | |
max_length_train: int = 8192, | |
use_flash_attn: bool = True, | |
use_cache: bool = True, | |
num_attention_heads: int = 16, | |
num_hidden_layers: int = 24, | |
vocab_size: int = 49152, | |
hidden_size: int = 2048, | |
num_kv_heads: int = 4, | |
torch_dtype: str = "bfloat16", | |
**kwargs, | |
): | |
kwargs["torch_dtype"] = torch_dtype | |
self.starcoder_model_name = starcoder_model_name | |
self.image_encoder_type = image_encoder_type | |
self.adapter_norm = adapter_norm | |
self.image_size = image_size | |
self.max_length = max_length | |
self.max_length_train = max_length_train | |
self.use_flash_attn = use_flash_attn | |
self.use_cache = use_cache | |
self.num_attention_heads = num_attention_heads | |
self.num_hidden_layers = num_hidden_layers | |
self.vocab_size = vocab_size | |
self.hidden_size = hidden_size | |
self.num_kv_heads = num_kv_heads | |
super().__init__(**kwargs) | |
class StarVectorForCausalLM(PreTrainedModel): | |
config_class = StarVectorConfig | |
_no_split_modules = [] | |
def __init__(self, config: StarVectorConfig, **kwargs): | |
super().__init__(config) | |
starcoder_model_name = config.starcoder_model_name | |
if 'starcoder2' in starcoder_model_name: | |
from starvector.model.models.starvector_v2 import StarVectorStarCoder2 | |
self.model = StarVectorStarCoder2(config=config, **kwargs) | |
else: | |
from starvector.model.models.starvector_v1 import StarVectorStarCoder | |
self.model = StarVectorStarCoder(config=config, **kwargs) | |
def supports_gradient_checkpointing(self): | |
# If the underlying transformer (e.g., the one in StarCoderModel) | |
# supports gradient checkpointing, delegate to it. | |
if hasattr(self.model, 'svg_transformer'): | |
return getattr(self.model.svg_transformer, 'supports_gradient_checkpointing', False) | |
return False | |
def gradient_checkpointing_enable(self): | |
# Optionally, forward this call to the internal transformer. | |
if hasattr(self.model, 'svg_transformer') and hasattr(self.model.svg_transformer, 'gradient_checkpointing_enable'): | |
self.model.svg_transformer.gradient_checkpointing_enable() | |
def forward(self, vision_embeds, input_ids, num_generations, attention_mask, num_logits_to_keep) -> Union[Tuple, CausalLMOutputWithCrossAttentions]: | |
completion_embeds = self.model._get_embeddings(input_ids) | |
inputs_embeds = torch.cat([vision_embeds.repeat(num_generations, 1, 1), completion_embeds], dim=1) | |
transformer_outputs = self.model.svg_transformer.transformer.transformer( | |
inputs_embeds=inputs_embeds, | |
attention_mask=attention_mask, | |
) | |
hidden_states = transformer_outputs[0] | |
if num_logits_to_keep > 0: | |
lm_logits = self.model.svg_transformer.transformer.lm_head(hidden_states[:, -num_logits_to_keep:, :]) | |
else: | |
lm_logits = self.model.svg_transformer.transformer.lm_head(hidden_states) | |
loss = None | |
return CausalLMOutputWithCrossAttentions( | |
loss=loss, | |
logits=lm_logits, | |
past_key_values=transformer_outputs.past_key_values, | |
hidden_states=transformer_outputs.hidden_states, | |
attentions=transformer_outputs.attentions, | |
cross_attentions=transformer_outputs.cross_attentions, | |
) | |
def generate_im2svg(self, batch, **kwargs): | |
return self.model.generate_im2svg(batch, **kwargs) | |
def generate_im2text(self, batch, **kwargs): | |
return self.model.generate_im2text(batch, **kwargs) | |
def process_images(self, images): | |
return self.model.image_encoder.process_images(images) | |