hz2475's picture
optimize
8d3de58
"""
A model worker executes the model.
"""
import argparse
import asyncio
import json
import time
import threading
import uuid
from fastapi import FastAPI, Request, BackgroundTasks
from fastapi.responses import StreamingResponse
import requests
import torch
import uvicorn
from functools import partial
from starvector.serve.constants import WORKER_HEART_BEAT_INTERVAL, CLIP_QUERY_LENGTH
from starvector.serve.util import (build_logger, server_error_msg,
pretty_print_semaphore)
from starvector.model.builder import load_pretrained_model
from starvector.serve.util import process_images, load_image_from_base64
from threading import Thread
from transformers import TextIteratorStreamer
GB = 1 << 30
worker_id = str(uuid.uuid4())[:6]
logger = build_logger("model_worker", f"model_worker_{worker_id}.log")
global_counter = 0
model_semaphore = None
def heart_beat_worker(controller):
while True:
time.sleep(WORKER_HEART_BEAT_INTERVAL)
controller.send_heart_beat()
class ModelWorker:
def __init__(self, controller_addr, worker_addr,
worker_id, no_register,
model_path, model_base, model_name,
load_8bit, load_4bit, device):
self.controller_addr = controller_addr
self.worker_addr = worker_addr
self.worker_id = worker_id
if model_path.endswith("/"):
model_path = model_path[:-1]
if model_name is None:
model_paths = model_path.split("/")
if model_paths[-1].startswith('checkpoint-'):
self.model_name = model_paths[-2] + "_" + model_paths[-1]
else:
self.model_name = model_paths[-1]
else:
self.model_name = model_name
if "text2svg" in self.model_name.lower():
self.task = "Text2SVG"
elif "im2svg" in self.model_name.lower():
self.task = "Image2SVG"
self.device = device
logger.info(f"Loading the model {self.model_name} on worker {worker_id} ...")
self.tokenizer, self.model, self.image_processor, self.context_len = load_pretrained_model(
model_path, device=self.device, load_in_8bit=load_8bit, load_in_4bit=load_4bit)
self.model.to(torch.bfloat16)
self.is_multimodal = 'starvector' in self.model_name.lower()
if not no_register:
self.register_to_controller()
self.heart_beat_thread = threading.Thread(
target=heart_beat_worker, args=(self,))
self.heart_beat_thread.start()
def register_to_controller(self):
logger.info("Register to controller")
url = self.controller_addr + "/register_worker"
data = {
"worker_name": self.worker_addr,
"check_heart_beat": True,
"worker_status": self.get_status()
}
r = requests.post(url, json=data)
assert r.status_code == 200
def send_heart_beat(self):
logger.info(f"Send heart beat. Models: {[self.model_name]}. "
f"Semaphore: {pretty_print_semaphore(model_semaphore)}. "
f"global_counter: {global_counter}")
url = self.controller_addr + "/receive_heart_beat"
while True:
try:
ret = requests.post(url, json={
"worker_name": self.worker_addr,
"queue_length": self.get_queue_length()}, timeout=5)
exist = ret.json()["exist"]
break
except requests.exceptions.RequestException as e:
logger.error(f"heart beat error: {e}")
time.sleep(5)
if not exist:
self.register_to_controller()
def get_queue_length(self):
if model_semaphore is None:
return 0
else:
return args.limit_model_concurrency - model_semaphore._value + (len(
model_semaphore._waiters) if model_semaphore._waiters is not None else 0)
def get_status(self):
return {
"model_names": [self.model_name],
"speed": 1,
"queue_length": self.get_queue_length(),
}
@torch.inference_mode()
def generate_stream(self, params):
tokenizer, model, image_processor, task = self.tokenizer, self.model, self.image_processor, self.task
num_beams = int(params.get("num_beams", 1))
temperature = float(params.get("temperature", 1.0))
len_penalty = float(params.get("len_penalty", 1.0))
top_p = float(params.get("top_p", 1.0))
max_context_length = getattr(model.config, 'max_position_embeddings', 8192)
streamer = TextIteratorStreamer(tokenizer, skip_prompt=False, skip_special_tokens=True, timeout=15)
prompt = params["prompt"]
if task == "Image2SVG":
images = params.get("images", None)
for b64_image in images:
if b64_image is not None and self.is_multimodal:
image = load_image_from_base64(b64_image)
image = process_images(image, image_processor)
image = image.to(self.model.device, dtype=torch.float16)
else:
image = None
max_new_tokens = min(int(params.get("max_new_tokens", 256)), 8192)
max_new_tokens = min(max_new_tokens, max_context_length - CLIP_QUERY_LENGTH)
pre_pend = prompt
batch = {}
batch["image"] = image
generate_method = model.model.generate_im2svg
else:
max_new_tokens = min(int(params.get("max_new_tokens", 128)), 8192)
pre_pend = ""
batch = {}
batch['caption'] = [prompt]
# White PIL image
batch['image'] = torch.zeros((3, 256, 256), dtype=torch.float16).to(self.model.device)
generate_method = model.model.generate_text2svg
if max_new_tokens < 1:
yield json.dumps({"text": prompt + "Exceeds max token length. Please start a new conversation, thanks.", "error_code": 0}).encode() + b"\0"
return
thread = Thread(target=generate_method, kwargs=dict(
batch=batch,
prompt=prompt,
use_nucleus_sampling=True,
num_beams=num_beams,
temperature=temperature,
length_penalty=len_penalty,
top_p=top_p,
max_length=max_new_tokens,
streamer=streamer,
))
thread.start()
generated_text = pre_pend
for new_text in streamer:
if new_text == " ":
continue
generated_text += new_text
# if generated_text.endswith(stop_str):
# generated_text = generated_text[:-len(stop_str)]
yield json.dumps({"text": generated_text, "error_code": 0}).encode() + b"\0"
def generate_stream_gate(self, params):
try:
for x in self.generate_stream(params):
yield x
except ValueError as e:
print("Caught ValueError:", e)
ret = {
"text": server_error_msg,
"error_code": 1,
}
yield json.dumps(ret).encode() + b"\0"
except torch.cuda.CudaError as e:
print("Caught torch.cuda.CudaError:", e)
ret = {
"text": server_error_msg,
"error_code": 1,
}
yield json.dumps(ret).encode() + b"\0"
except Exception as e:
print("Caught Unknown Error", e)
ret = {
"text": server_error_msg,
"error_code": 1,
}
yield json.dumps(ret).encode() + b"\0"
app = FastAPI()
def release_model_semaphore(fn=None):
model_semaphore.release()
if fn is not None:
fn()
@app.post("/worker_generate_stream")
async def generate_stream(request: Request):
global model_semaphore, global_counter
global_counter += 1
params = await request.json()
if model_semaphore is None:
model_semaphore = asyncio.Semaphore(args.limit_model_concurrency)
await model_semaphore.acquire()
worker.send_heart_beat()
generator = worker.generate_stream_gate(params)
background_tasks = BackgroundTasks()
background_tasks.add_task(partial(release_model_semaphore, fn=worker.send_heart_beat))
return StreamingResponse(generator, background=background_tasks)
@app.post("/worker_get_status")
async def get_status(request: Request):
return worker.get_status()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--host", type=str, default="localhost")
parser.add_argument("--port", type=int, default=21002)
parser.add_argument("--worker-address", type=str,
default="http://localhost:21002")
parser.add_argument("--controller-address", type=str,
default="http://localhost:21001")
parser.add_argument("--model-path", type=str, default="joanrodai/starvector-1.4b")
parser.add_argument("--model-base", type=str, default=None)
parser.add_argument("--model-name", type=str)
parser.add_argument("--device", type=str, default="cuda")
parser.add_argument("--multi-modal", action="store_true", help="Multimodal mode is automatically detected with model name, please make sure `starvector` is included in the model path.")
parser.add_argument("--limit-model-concurrency", type=int, default=5)
parser.add_argument("--stream-interval", type=int, default=1)
parser.add_argument("--no-register", action="store_true")
parser.add_argument("--load-8bit", action="store_true")
parser.add_argument("--load-4bit", action="store_true")
args = parser.parse_args()
logger.info(f"args: {args}")
if args.multi_modal:
logger.warning("Multimodal mode is automatically detected with model name, please make sure `starvector` is included in the model path.")
worker = ModelWorker(args.controller_address,
args.worker_address,
worker_id,
args.no_register,
args.model_path,
args.model_base,
args.model_name,
args.load_8bit,
args.load_4bit,
args.device)
uvicorn.run(app, host=args.host, port=args.port, log_level="info")