File size: 8,488 Bytes
f9305b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
"""Contains code for custom charts and table configurations."""

from typing import List, Literal, Optional

import pandas as pd
import vizro.models as vm
import vizro.plotly.express as px
from dash import html
from vizro.models.types import capture

from .config import PRIMARY_COLOR, SECONDARY_COLOR
from .helper import shorten_product_name


# CUSTOM CHARTS ---------------
@capture("graph")
def bar_top_n(
    data_frame: pd.DataFrame,
    x: str,
    y: str,
    top_n: int = 15,
    custom_data: Optional[List[str]] = None,
    title: Optional[str] = None,
    x_visible: bool = True,
):
    """Custom bar chart implementation.

    Based on [px.bar](https://plotly.com/python-api-reference/generated/plotly.express.bar).
    """
    df_agg = data_frame.groupby(y).agg({x: "sum"}).sort_values(by=x, ascending=False).reset_index()
    fig = px.bar(
        data_frame=df_agg.head(top_n),
        x=x,
        y=y,
        orientation="h",
        text_auto=".3s",
        color_discrete_sequence=[SECONDARY_COLOR],
        custom_data=custom_data,
    )
    fig.update_layout(
        title=title,
        xaxis={"title": "Total order value in USD", "visible": x_visible},
        yaxis={"title": "", "autorange": "reversed"},
        margin={"r": 0, "b": 16, "t": 32},
        paper_bgcolor="rgba(0, 0, 0, 0)",
        plot_bgcolor="rgba(0, 0, 0, 0)",
    )
    return fig


@capture("graph")
def line(data_frame: pd.DataFrame, x: str, y: str, color: str, title: Optional[str] = None):
    """Custom line chart implementation.

    Based on [px.line](https://plotly.com/python-api-reference/generated/plotly.express.line).
    """
    df_agg = data_frame.groupby([x, color]).agg({y: "sum"}).reset_index()

    # Create full order date for correct sorting
    df_agg["order_date_sort"] = pd.to_datetime(df_agg[x] + "-" + df_agg[color], format="%b-%d-%Y")
    df_agg = df_agg.sort_values(by="order_date_sort")

    fig = px.line(
        data_frame=df_agg,
        x=x,
        y=y,
        color=color,
        color_discrete_sequence=[SECONDARY_COLOR, PRIMARY_COLOR],
    )
    fig.update_layout(
        title=title,
        xaxis={"title": "", "nticks": 12, "showgrid": False},
        yaxis_title="Total order value in USD",
        legend_title="",
    )
    return fig


@capture("graph")
def product_seasonality_heatmap(
    data_frame: pd.DataFrame,
    x: str,
    y: str,
    z: str,
    top_n: int = 15,
    color_continuous_scale: Optional[List[str]] = None,
):
    """Custom density heatmap implementation.

    Based on [px.density_heatmap](https://plotly.com/python-api-reference/generated/plotly.express.density_heatmap).
    """
    # Filter for top n categories
    top_products = (
        data_frame.groupby([y]).agg({z: "sum"}).sort_values(by=z, ascending=False).reset_index().head(top_n)[y]
    )
    df_filtered = data_frame[data_frame[y].isin(top_products)]

    # Get average order value per category and month
    df_agg = df_filtered.groupby([x, y]).agg({z: "sum"}).sort_values(by=z, ascending=False).reset_index()

    fig = px.density_heatmap(
        data_frame=df_agg,
        x=x,
        y=y,
        z=z,
        text_auto=".2s",
        nbinsx=12,
        color_continuous_scale=color_continuous_scale,
    )

    fig.update_coloraxes(colorbar_title="")
    fig.update_yaxes(categoryorder="array", categoryarray=top_products)
    fig.update_layout(
        title={"text": f"Seasonality of {top_n} categories / products", "pad_l": 0, "pad_r": 0},
        yaxis={"title": "", "autorange": "reversed", "visible": False},
        xaxis={
            "title": "",
            "showgrid": False,
            "tickmode": "array",
            "tickvals": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12],
            "ticktext": ["Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"],
        },
        margin={"l": 0, "r": 0, "t": 32, "b": 0},
    )
    return fig


@capture("graph")
def choropleth(
    locations: str,
    color: str,
    data_frame: pd.DataFrame = None,
    title: Optional[str] = None,
    custom_data: Optional[List[str]] = None,
    color_continuous_scale: Optional[List[str]] = None,
    show_region_only: bool = False,
):
    """Custom choropleth implementation.

    Based on [px.choropleth](https://plotly.com/python-api-reference/generated/plotly.express.choropleth).
    """
    df_agg = data_frame.groupby(locations).agg({color: "sum"}).reset_index()
    fig = px.choropleth(
        data_frame=df_agg,
        locations=locations,
        color=color,
        color_continuous_scale=color_continuous_scale,
        scope="usa",
        locationmode="USA-states",
        title=title,
        custom_data=custom_data,
    )
    fig.update_coloraxes(colorbar={"thickness": 10, "title": ""})
    fig.update_layout(geo_bgcolor="rgba(0,0,0,0)")

    if show_region_only:
        fig.update_geos(
            fitbounds="locations",
            visible=False,
            projection_scale=10,
        )
        fig.update_layout(
            {
                "coloraxis_showscale": False,
                "margin": {"t": 0, "b": 0, "r": 0, "l": 0},
                "title_pad": {"t": 0, "b": 0, "r": 0, "l": 0},
                "height": 160,
            }
        )
    return fig


@capture("graph")
def bar_avg(data_frame: pd.DataFrame, x: str, y: str, title: Optional[str] = None):
    """Custom bar chart implementation.

    Based on [px.bar](https://plotly.com/python-api-reference/generated/plotly.express.bar).
    """
    df_agg = data_frame.groupby(x).agg({y: "mean"}).sort_values(by=y, ascending=False).reset_index()
    df_agg[x] = df_agg[x].apply(shorten_product_name)
    fig = px.bar(
        data_frame=df_agg,
        x=x,
        y=y,
        text_auto=".0f",
        color_discrete_sequence=[SECONDARY_COLOR],
    )
    fig.update_layout(
        title=title,
        xaxis={"title": ""},
        yaxis={"title": f"{y}"},
    )
    if x == "Q-demos-income":
        fig.update_xaxes(
            categoryorder="array",
            categoryarray=[
                "Less than $25,000",
                "$25,000 - $49,999",
                "$50,000 - $74,999",
                "$75,000 - $99,999",
                "$100,000 - $149,999",
                "$150,000 or more",
                "Prefer not to say",
            ],
        )
    else:
        fig.update_xaxes(categoryorder="category ascending")
    return fig


# CUSTOM COMPONENTS -----------
class FlexContainer(vm.Container):
    """Custom flex `Container`."""

    type: Literal["flex_container"] = "flex_container"
    classname: Optional[str] = "d-flex"

    def build(self):
        """Returns a flex container."""
        components_container = [component.build() for component in self.components]

        return html.Div(
            id=self.id,
            children=[html.H3(children=self.title, className="container__title"), *components_container],
            className=self.classname,
        )


vm.Page.add_type("components", FlexContainer)


# TABLE SPECIFICATIONS ----
CELL_STYLE = {
    "styleConditions": [
        {
            "condition": "params.data.Quintiles == 0",
            "style": {"backgroundColor": "#ffc495"},
        },
        {
            "condition": "params.data.Quintiles == 1",
            "style": {"backgroundColor": "#ffb276"},
        },
        {
            "condition": "params.data.Quintiles == 2",
            "style": {"backgroundColor": "#fe9f56"},
        },
        {
            "condition": "params.data.Quintiles == 3",
            "style": {"backgroundColor": "#fb8d35"},
        },
        {
            "condition": "params.data.Quintiles == 4",
            "style": {"backgroundColor": "#f77a00"},
        },
    ],
}

COLUMNDEFS = [
    {"field": "Survey ResponseID", "cellDataType": "text"},
    {"field": "Q-demos-age", "cellDataType": "text"},
    {"field": "Q-demos-education", "cellDataType": "text"},
    {"field": "Q-demos-income", "cellDataType": "text"},
    {"field": "Q-demos-gender", "cellDataType": "text"},
    {"field": "Total order value", "cellDataType": "dollar", "cellStyle": CELL_STYLE},
    {"field": "Quintiles"},
    {"field": "Avg unit price", "cellDataType": "dollar"},
    {"field": "Avg order value", "cellDataType": "dollar"},
    {"field": "Total units ordered"},
    {"field": "Number of unique categories"},
    {"field": "Number of unique products"},
    {"field": "Number of unique order dates"},
    {"field": "pop", "flex": 3},
]