File size: 32,652 Bytes
6dc0c9c 2238fe2 6dc0c9c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 |
"""Call API providers."""
import json
import os
import random
import re
from typing import Optional
import time
import requests
from src.utils import build_logger
logger = build_logger("gradio_web_server", "gradio_web_server.log")
def get_api_provider_stream_iter(
conv,
model_name,
model_api_dict,
temperature,
top_p,
max_new_tokens,
state,
):
if model_api_dict["api_type"] == "openai":
if model_api_dict["vision-arena"]:
prompt = conv.to_openai_vision_api_messages()
else:
prompt = conv.to_openai_api_messages()
stream_iter = openai_api_stream_iter(
model_api_dict["model_name"],
prompt,
temperature,
top_p,
max_new_tokens,
api_base=model_api_dict["api_base"],
api_key=model_api_dict["api_key"],
)
elif model_api_dict["api_type"] == "openai_assistant":
last_prompt = conv.messages[-2][1]
stream_iter = openai_assistant_api_stream_iter(
state,
last_prompt,
assistant_id=model_api_dict["assistant_id"],
api_key=model_api_dict["api_key"],
)
elif model_api_dict["api_type"] == "anthropic":
if model_api_dict["vision-arena"]:
prompt = conv.to_anthropic_vision_api_messages()
else:
prompt = conv.to_openai_api_messages()
stream_iter = anthropic_api_stream_iter(
model_name, prompt, temperature, top_p, max_new_tokens
)
elif model_api_dict["api_type"] == "anthropic_message":
if model_api_dict["vision-arena"]:
prompt = conv.to_anthropic_vision_api_messages()
else:
prompt = conv.to_openai_api_messages()
stream_iter = anthropic_message_api_stream_iter(
model_name, prompt, temperature, top_p, max_new_tokens
)
elif model_api_dict["api_type"] == "anthropic_message_vertex":
if model_api_dict["vision-arena"]:
prompt = conv.to_anthropic_vision_api_messages()
else:
prompt = conv.to_openai_api_messages()
stream_iter = anthropic_message_api_stream_iter(
model_api_dict["model_name"],
prompt,
temperature,
top_p,
max_new_tokens,
vertex_ai=True,
)
elif model_api_dict["api_type"] == "gemini":
prompt = conv.to_gemini_api_messages()
stream_iter = gemini_api_stream_iter(
model_api_dict["model_name"],
prompt,
temperature,
top_p,
max_new_tokens,
api_key=model_api_dict["api_key"],
)
elif model_api_dict["api_type"] == "bard":
prompt = conv.to_openai_api_messages()
stream_iter = bard_api_stream_iter(
model_api_dict["model_name"],
prompt,
temperature,
top_p,
api_key=model_api_dict["api_key"],
)
elif model_api_dict["api_type"] == "mistral":
prompt = conv.to_openai_api_messages()
stream_iter = mistral_api_stream_iter(
model_name, prompt, temperature, top_p, max_new_tokens
)
elif model_api_dict["api_type"] == "nvidia":
prompt = conv.to_openai_api_messages()
stream_iter = nvidia_api_stream_iter(
model_name,
prompt,
temperature,
top_p,
max_new_tokens,
model_api_dict["api_base"],
)
elif model_api_dict["api_type"] == "ai2":
prompt = conv.to_openai_api_messages()
stream_iter = ai2_api_stream_iter(
model_name,
model_api_dict["model_name"],
prompt,
temperature,
top_p,
max_new_tokens,
api_base=model_api_dict["api_base"],
api_key=model_api_dict["api_key"],
)
elif model_api_dict["api_type"] == "vertex":
prompt = conv.to_vertex_api_messages()
stream_iter = vertex_api_stream_iter(
model_name, prompt, temperature, top_p, max_new_tokens
)
elif model_api_dict["api_type"] == "yandexgpt":
# note: top_p parameter is unused by yandexgpt
messages = []
if conv.system_message:
messages.append({"role": "system", "text": conv.system_message})
messages += [
{"role": role, "text": text}
for role, text in conv.messages
if text is not None
]
fixed_temperature = model_api_dict.get("fixed_temperature")
if fixed_temperature is not None:
temperature = fixed_temperature
stream_iter = yandexgpt_api_stream_iter(
model_name=model_api_dict["model_name"],
messages=messages,
temperature=temperature,
max_tokens=max_new_tokens,
api_base=model_api_dict["api_base"],
api_key=model_api_dict.get("api_key"),
folder_id=model_api_dict.get("folder_id"),
)
elif model_api_dict["api_type"] == "cohere":
messages = conv.to_openai_api_messages()
stream_iter = cohere_api_stream_iter(
client_name=model_api_dict.get("client_name", "FastChat"),
model_id=model_api_dict["model_name"],
messages=messages,
temperature=temperature,
top_p=top_p,
max_new_tokens=max_new_tokens,
api_base=model_api_dict["api_base"],
api_key=model_api_dict["api_key"],
)
elif model_api_dict["api_type"] == "reka":
messages = conv.to_reka_api_messages()
stream_iter = reka_api_stream_iter(
model_name=model_api_dict["model_name"],
messages=messages,
temperature=temperature,
top_p=top_p,
max_new_tokens=max_new_tokens,
api_base=model_api_dict["api_base"],
api_key=model_api_dict["api_key"],
)
else:
raise NotImplementedError()
return stream_iter
def openai_api_stream_iter(
model_name,
messages,
temperature,
top_p,
max_new_tokens,
api_base=None,
api_key=None,
):
import openai
api_key = api_key or os.environ["OPENAI_API_KEY"]
if "azure" in model_name:
client = openai.AzureOpenAI(
api_version="2023-07-01-preview",
azure_endpoint=api_base or "https://api.openai.com/v1",
api_key=api_key,
)
else:
client = openai.OpenAI(
base_url=api_base or "https://api.openai.com/v1",
api_key=api_key,
timeout=180,
)
# Make requests for logging
text_messages = []
for message in messages:
if type(message["content"]) == str: # text-only model
text_messages.append(message)
else: # vision model
filtered_content_list = [
content for content in message["content"] if content["type"] == "text"
]
text_messages.append(
{"role": message["role"], "content": filtered_content_list}
)
gen_params = {
"model": model_name,
"prompt": text_messages,
"temperature": temperature,
"top_p": top_p,
"max_new_tokens": max_new_tokens,
}
logger.info(f"==== request ====\n{gen_params}")
res = client.chat.completions.create(
model=model_name,
messages=messages,
temperature=temperature,
max_tokens=max_new_tokens,
stream=True,
)
text = ""
for chunk in res:
if len(chunk.choices) > 0:
text += chunk.choices[0].delta.content or ""
data = {
"text": text,
"error_code": 0,
}
yield data
def upload_openai_file_to_gcs(file_id):
import openai
from google.cloud import storage
storage_client = storage.Client()
file = openai.files.content(file_id)
# upload file to GCS
bucket = storage_client.get_bucket("arena_user_content")
blob = bucket.blob(f"{file_id}")
blob.upload_from_string(file.read())
blob.make_public()
return blob.public_url
def openai_assistant_api_stream_iter(
state,
prompt,
assistant_id,
api_key=None,
):
import openai
import base64
api_key = api_key or os.environ["OPENAI_API_KEY"]
client = openai.OpenAI(base_url="https://api.openai.com/v1", api_key=api_key)
if state.oai_thread_id is None:
logger.info("==== create thread ====")
thread = client.beta.threads.create()
state.oai_thread_id = thread.id
logger.info(f"==== thread_id ====\n{state.oai_thread_id}")
thread_message = client.beta.threads.messages.with_raw_response.create(
state.oai_thread_id,
role="user",
content=prompt,
timeout=3,
)
# logger.info(f"header {thread_message.headers}")
thread_message = thread_message.parse()
# Make requests
gen_params = {
"assistant_id": assistant_id,
"thread_id": state.oai_thread_id,
"message": prompt,
}
logger.info(f"==== request ====\n{gen_params}")
res = requests.post(
f"https://api.openai.com/v1/threads/{state.oai_thread_id}/runs",
headers={
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json",
"OpenAI-Beta": "assistants=v1",
},
json={"assistant_id": assistant_id, "stream": True},
timeout=30,
stream=True,
)
list_of_text = []
list_of_raw_text = []
offset_idx = 0
full_ret_text = ""
idx_mapping = {}
for line in res.iter_lines():
if not line:
continue
data = line.decode("utf-8")
# logger.info("data:", data)
if data.endswith("[DONE]"):
break
if data.startswith("event"):
event = data.split(":")[1].strip()
if event == "thread.message.completed":
offset_idx += len(list_of_text)
continue
data = json.loads(data[6:])
if data.get("status") == "failed":
yield {
"text": f"**API REQUEST ERROR** Reason: {data['last_error']['message']}",
"error_code": 1,
}
return
if data.get("status") == "completed":
logger.info(f"[debug]: {data}")
if data["object"] != "thread.message.delta":
continue
for delta in data["delta"]["content"]:
text_index = delta["index"] + offset_idx
if len(list_of_text) <= text_index:
list_of_text.append("")
list_of_raw_text.append("")
text = list_of_text[text_index]
raw_text = list_of_raw_text[text_index]
if delta["type"] == "text":
# text, url_citation or file_path
content = delta["text"]
if "annotations" in content and len(content["annotations"]) > 0:
annotations = content["annotations"]
cur_offset = 0
raw_text_copy = raw_text
for anno in annotations:
if anno["type"] == "url_citation":
anno_text = anno["text"]
if anno_text not in idx_mapping:
continue
citation_number = idx_mapping[anno_text]
start_idx = anno["start_index"] + cur_offset
end_idx = anno["end_index"] + cur_offset
url = anno["url_citation"]["url"]
citation = f" [[{citation_number}]]({url})"
raw_text_copy = (
raw_text_copy[:start_idx]
+ citation
+ raw_text_copy[end_idx:]
)
cur_offset += len(citation) - (end_idx - start_idx)
elif anno["type"] == "file_path":
file_public_url = upload_openai_file_to_gcs(
anno["file_path"]["file_id"]
)
raw_text_copy = raw_text_copy.replace(
anno["text"], f"{file_public_url}"
)
text = raw_text_copy
else:
text_content = content["value"]
raw_text += text_content
# re-index citation number
pattern = r"【\d+】"
matches = re.findall(pattern, content["value"])
if len(matches) > 0:
for match in matches:
if match not in idx_mapping:
idx_mapping[match] = len(idx_mapping) + 1
citation_number = idx_mapping[match]
text_content = text_content.replace(
match, f" [{citation_number}]"
)
text += text_content
# yield {"text": text, "error_code": 0}
elif delta["type"] == "image_file":
image_public_url = upload_openai_file_to_gcs(
delta["image_file"]["file_id"]
)
# raw_text += f"![image]({image_public_url})"
text += f"![image]({image_public_url})"
list_of_text[text_index] = text
list_of_raw_text[text_index] = raw_text
full_ret_text = "\n".join(list_of_text)
yield {"text": full_ret_text, "error_code": 0}
def anthropic_api_stream_iter(model_name, prompt, temperature, top_p, max_new_tokens):
import anthropic
c = anthropic.Anthropic(api_key=os.environ["ANTHROPIC_API_KEY"])
# Make requests
gen_params = {
"model": model_name,
"prompt": prompt,
"temperature": temperature,
"top_p": top_p,
"max_new_tokens": max_new_tokens,
}
logger.info(f"==== request ====\n{gen_params}")
res = c.completions.create(
prompt=prompt,
stop_sequences=[anthropic.HUMAN_PROMPT],
max_tokens_to_sample=max_new_tokens,
temperature=temperature,
top_p=top_p,
model=model_name,
stream=True,
)
text = ""
for chunk in res:
text += chunk.completion
data = {
"text": text,
"error_code": 0,
}
yield data
def anthropic_message_api_stream_iter(
model_name,
messages,
temperature,
top_p,
max_new_tokens,
vertex_ai=False,
):
import anthropic
if vertex_ai:
client = anthropic.AnthropicVertex(
region=os.environ["GCP_LOCATION"],
project_id=os.environ["GCP_PROJECT_ID"],
max_retries=5,
)
else:
client = anthropic.Anthropic(
api_key=os.environ["ANTHROPIC_API_KEY"],
max_retries=5,
)
text_messages = []
for message in messages:
if type(message["content"]) == str: # text-only model
text_messages.append(message)
else: # vision model
filtered_content_list = [
content for content in message["content"] if content["type"] == "text"
]
text_messages.append(
{"role": message["role"], "content": filtered_content_list}
)
# Make requests for logging
gen_params = {
"model": model_name,
"prompt": text_messages,
"temperature": temperature,
"top_p": top_p,
"max_new_tokens": max_new_tokens,
}
logger.info(f"==== request ====\n{gen_params}")
system_prompt = ""
if messages[0]["role"] == "system":
if type(messages[0]["content"]) == dict:
system_prompt = messages[0]["content"]["text"]
elif type(messages[0]["content"]) == str:
system_prompt = messages[0]["content"]
# remove system prompt
messages = messages[1:]
text = ""
with client.messages.stream(
temperature=temperature,
top_p=top_p,
max_tokens=max_new_tokens,
messages=messages,
model=model_name,
system=system_prompt,
) as stream:
for chunk in stream.text_stream:
text += chunk
data = {
"text": text,
"error_code": 0,
}
yield data
def gemini_api_stream_iter(
model_name, messages, temperature, top_p, max_new_tokens, api_key=None
):
import google.generativeai as genai # pip install google-generativeai
if api_key is None:
api_key = os.environ["GEMINI_API_KEY"]
genai.configure(api_key=api_key)
generation_config = {
"temperature": temperature,
"max_output_tokens": max_new_tokens,
"top_p": top_p,
}
params = {
"model": model_name,
"prompt": messages,
}
params.update(generation_config)
logger.info(f"==== request ====\n{params}")
safety_settings = [
{"category": "HARM_CATEGORY_HARASSMENT", "threshold": "BLOCK_NONE"},
{"category": "HARM_CATEGORY_HATE_SPEECH", "threshold": "BLOCK_NONE"},
{"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT", "threshold": "BLOCK_NONE"},
{"category": "HARM_CATEGORY_DANGEROUS_CONTENT", "threshold": "BLOCK_NONE"},
]
history = []
system_prompt = None
for message in messages[:-1]:
if message["role"] == "system":
system_prompt = message["content"]
continue
history.append({"role": message["role"], "parts": message["content"]})
model = genai.GenerativeModel(
model_name=model_name,
system_instruction=system_prompt,
generation_config=generation_config,
safety_settings=safety_settings,
)
convo = model.start_chat(history=history)
response = convo.send_message(messages[-1]["content"], stream=True)
try:
text = ""
for chunk in response:
text += chunk.candidates[0].content.parts[0].text
data = {
"text": text,
"error_code": 0,
}
yield data
except Exception as e:
logger.error(f"==== error ====\n{e}")
reason = chunk.candidates
yield {
"text": f"**API REQUEST ERROR** Reason: {reason}.",
"error_code": 1,
}
def bard_api_stream_iter(model_name, conv, temperature, top_p, api_key=None):
del top_p # not supported
del temperature # not supported
if api_key is None:
api_key = os.environ["BARD_API_KEY"]
# convert conv to conv_bard
conv_bard = []
for turn in conv:
if turn["role"] == "user":
conv_bard.append({"author": "0", "content": turn["content"]})
elif turn["role"] == "assistant":
conv_bard.append({"author": "1", "content": turn["content"]})
else:
raise ValueError(f"Unsupported role: {turn['role']}")
params = {
"model": model_name,
"prompt": conv_bard,
}
logger.info(f"==== request ====\n{params}")
try:
res = requests.post(
f"https://generativelanguage.googleapis.com/v1beta2/models/{model_name}:generateMessage?key={api_key}",
json={
"prompt": {
"messages": conv_bard,
},
},
timeout=30,
)
except Exception as e:
logger.error(f"==== error ====\n{e}")
yield {
"text": f"**API REQUEST ERROR** Reason: {e}.",
"error_code": 1,
}
if res.status_code != 200:
logger.error(f"==== error ==== ({res.status_code}): {res.text}")
yield {
"text": f"**API REQUEST ERROR** Reason: status code {res.status_code}.",
"error_code": 1,
}
response_json = res.json()
if "candidates" not in response_json:
logger.error(f"==== error ==== response blocked: {response_json}")
reason = response_json["filters"][0]["reason"]
yield {
"text": f"**API REQUEST ERROR** Reason: {reason}.",
"error_code": 1,
}
response = response_json["candidates"][0]["content"]
pos = 0
while pos < len(response):
# simulate token streaming
pos += random.randint(3, 6)
time.sleep(0.002)
data = {
"text": response[:pos],
"error_code": 0,
}
yield data
def ai2_api_stream_iter(
model_name,
model_id,
messages,
temperature,
top_p,
max_new_tokens,
api_key=None,
api_base=None,
):
# get keys and needed values
ai2_key = api_key or os.environ.get("AI2_API_KEY")
api_base = api_base or "https://inferd.allen.ai/api/v1/infer"
# Make requests
gen_params = {
"model": model_name,
"prompt": messages,
"temperature": temperature,
"top_p": top_p,
"max_new_tokens": max_new_tokens,
}
logger.info(f"==== request ====\n{gen_params}")
# AI2 uses vLLM, which requires that `top_p` be 1.0 for greedy sampling:
# https://github.com/vllm-project/vllm/blob/v0.1.7/vllm/sampling_params.py#L156-L157
if temperature == 0.0 and top_p < 1.0:
raise ValueError("top_p must be 1 when temperature is 0.0")
res = requests.post(
api_base,
stream=True,
headers={"Authorization": f"Bearer {ai2_key}"},
json={
"model_id": model_id,
# This input format is specific to the Tulu2 model. Other models
# may require different input formats. See the model's schema
# documentation on InferD for more information.
"input": {
"messages": messages,
"opts": {
"max_tokens": max_new_tokens,
"temperature": temperature,
"top_p": top_p,
"logprobs": 1, # increase for more choices
},
},
},
timeout=5,
)
if res.status_code != 200:
logger.error(f"unexpected response ({res.status_code}): {res.text}")
raise ValueError("unexpected response from InferD", res)
text = ""
for line in res.iter_lines():
if line:
part = json.loads(line)
if "result" in part and "output" in part["result"]:
for t in part["result"]["output"]["text"]:
text += t
else:
logger.error(f"unexpected part: {part}")
raise ValueError("empty result in InferD response")
data = {
"text": text,
"error_code": 0,
}
yield data
def mistral_api_stream_iter(model_name, messages, temperature, top_p, max_new_tokens):
from mistralai.client import MistralClient
from mistralai.models.chat_completion import ChatMessage
api_key = os.environ["MISTRAL_API_KEY"]
client = MistralClient(api_key=api_key, timeout=5)
# Make requests
gen_params = {
"model": model_name,
"prompt": messages,
"temperature": temperature,
"top_p": top_p,
"max_new_tokens": max_new_tokens,
}
logger.info(f"==== request ====\n{gen_params}")
new_messages = [
ChatMessage(role=message["role"], content=message["content"])
for message in messages
]
res = client.chat_stream(
model=model_name,
temperature=temperature,
messages=new_messages,
max_tokens=max_new_tokens,
top_p=top_p,
)
text = ""
for chunk in res:
if chunk.choices[0].delta.content is not None:
text += chunk.choices[0].delta.content
data = {
"text": text,
"error_code": 0,
}
yield data
def nvidia_api_stream_iter(model_name, messages, temp, top_p, max_tokens, api_base):
api_key = os.environ["NVIDIA_API_KEY"]
headers = {
"Authorization": f"Bearer {api_key}",
"accept": "text/event-stream",
"content-type": "application/json",
}
# nvidia api does not accept 0 temperature
if temp == 0.0:
temp = 0.000001
payload = {
"messages": messages,
"temperature": temp,
"top_p": top_p,
"max_tokens": max_tokens,
"seed": 42,
"stream": True,
}
logger.info(f"==== request ====\n{payload}")
response = requests.post(
api_base, headers=headers, json=payload, stream=True, timeout=1
)
text = ""
for line in response.iter_lines():
if line:
data = line.decode("utf-8")
if data.endswith("[DONE]"):
break
data = json.loads(data[6:])["choices"][0]["delta"]["content"]
text += data
yield {"text": text, "error_code": 0}
def yandexgpt_api_stream_iter(
model_name, messages, temperature, max_tokens, api_base, api_key, folder_id
):
api_key = api_key or os.environ["YANDEXGPT_API_KEY"]
headers = {
"Authorization": f"Api-Key {api_key}",
"content-type": "application/json",
}
payload = {
"modelUri": f"gpt://{folder_id}/{model_name}",
"completionOptions": {
"temperature": temperature,
"max_tokens": max_tokens,
"stream": True,
},
"messages": messages,
}
logger.info(f"==== request ====\n{payload}")
# https://llm.api.cloud.yandex.net/foundationModels/v1/completion
response = requests.post(
api_base, headers=headers, json=payload, stream=True, timeout=60
)
text = ""
for line in response.iter_lines():
if line:
data = json.loads(line.decode("utf-8"))
data = data["result"]
top_alternative = data["alternatives"][0]
text = top_alternative["message"]["text"]
yield {"text": text, "error_code": 0}
status = top_alternative["status"]
if status in (
"ALTERNATIVE_STATUS_FINAL",
"ALTERNATIVE_STATUS_TRUNCATED_FINAL",
):
break
def cohere_api_stream_iter(
client_name: str,
model_id: str,
messages: list,
temperature: Optional[
float
] = None, # The SDK or API handles None for all parameters following
top_p: Optional[float] = None,
max_new_tokens: Optional[int] = None,
api_key: Optional[str] = None, # default is env var CO_API_KEY
api_base: Optional[str] = None,
):
import cohere
OPENAI_TO_COHERE_ROLE_MAP = {
"user": "User",
"assistant": "Chatbot",
"system": "System",
}
client = cohere.Client(
api_key=api_key,
base_url=api_base,
client_name=client_name,
)
# prepare and log requests
chat_history = [
dict(
role=OPENAI_TO_COHERE_ROLE_MAP[message["role"]], message=message["content"]
)
for message in messages[:-1]
]
actual_prompt = messages[-1]["content"]
gen_params = {
"model": model_id,
"messages": messages,
"chat_history": chat_history,
"prompt": actual_prompt,
"temperature": temperature,
"top_p": top_p,
"max_new_tokens": max_new_tokens,
}
logger.info(f"==== request ====\n{gen_params}")
# make request and stream response
res = client.chat_stream(
message=actual_prompt,
chat_history=chat_history,
model=model_id,
temperature=temperature,
max_tokens=max_new_tokens,
p=top_p,
)
try:
text = ""
for streaming_item in res:
if streaming_item.event_type == "text-generation":
text += streaming_item.text
yield {"text": text, "error_code": 0}
except cohere.core.ApiError as e:
logger.error(f"==== error from cohere api: {e} ====")
yield {
"text": f"**API REQUEST ERROR** Reason: {e}",
"error_code": 1,
}
def vertex_api_stream_iter(model_name, messages, temperature, top_p, max_new_tokens):
import vertexai
from vertexai import generative_models
from vertexai.generative_models import (
GenerationConfig,
GenerativeModel,
Image,
)
project_id = os.environ.get("GCP_PROJECT_ID", None)
location = os.environ.get("GCP_LOCATION", None)
vertexai.init(project=project_id, location=location)
text_messages = []
for message in messages:
if type(message) == str:
text_messages.append(message)
gen_params = {
"model": model_name,
"prompt": text_messages,
"temperature": temperature,
"top_p": top_p,
"max_new_tokens": max_new_tokens,
}
logger.info(f"==== request ====\n{gen_params}")
safety_settings = [
generative_models.SafetySetting(
category=generative_models.HarmCategory.HARM_CATEGORY_HARASSMENT,
threshold=generative_models.HarmBlockThreshold.BLOCK_NONE,
),
generative_models.SafetySetting(
category=generative_models.HarmCategory.HARM_CATEGORY_HATE_SPEECH,
threshold=generative_models.HarmBlockThreshold.BLOCK_NONE,
),
generative_models.SafetySetting(
category=generative_models.HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT,
threshold=generative_models.HarmBlockThreshold.BLOCK_NONE,
),
generative_models.SafetySetting(
category=generative_models.HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT,
threshold=generative_models.HarmBlockThreshold.BLOCK_NONE,
),
]
generator = GenerativeModel(model_name).generate_content(
messages,
stream=True,
generation_config=GenerationConfig(
top_p=top_p, max_output_tokens=max_new_tokens, temperature=temperature
),
safety_settings=safety_settings,
)
ret = ""
for chunk in generator:
# NOTE(chris): This may be a vertex api error, below is HOTFIX: https://github.com/googleapis/python-aiplatform/issues/3129
ret += chunk.candidates[0].content.parts[0]._raw_part.text
# ret += chunk.text
data = {
"text": ret,
"error_code": 0,
}
yield data
def reka_api_stream_iter(
model_name: str,
messages: list,
temperature: Optional[
float
] = None, # The SDK or API handles None for all parameters following
top_p: Optional[float] = None,
max_new_tokens: Optional[int] = None,
api_key: Optional[str] = None, # default is env var CO_API_KEY
api_base: Optional[str] = None,
):
api_key = api_key or os.environ["REKA_API_KEY"]
use_search_engine = False
if "-online" in model_name:
model_name = model_name.replace("-online", "")
use_search_engine = True
request = {
"model_name": model_name,
"conversation_history": messages,
"temperature": temperature,
"request_output_len": max_new_tokens,
"runtime_top_p": top_p,
"stream": True,
"use_search_engine": use_search_engine,
}
# Make requests for logging
text_messages = []
for message in messages:
text_messages.append({"type": message["type"], "text": message["text"]})
logged_request = dict(request)
logged_request["conversation_history"] = text_messages
logger.info(f"==== request ====\n{logged_request}")
response = requests.post(
api_base,
stream=True,
json=request,
headers={
"X-Api-Key": api_key,
},
)
if response.status_code != 200:
error_message = response.text
logger.error(f"==== error from reka api: {error_message} ====")
yield {
"text": f"**API REQUEST ERROR** Reason: {error_message}",
"error_code": 1,
}
return
for line in response.iter_lines():
line = line.decode("utf8")
if not line.startswith("data: "):
continue
gen = json.loads(line[6:])
yield {"text": gen["text"], "error_code": 0}
|