File size: 32,652 Bytes
6dc0c9c
 
 
 
 
 
 
 
 
 
 
2238fe2
6dc0c9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
"""Call API providers."""

import json
import os
import random
import re
from typing import Optional
import time

import requests

from src.utils import build_logger


logger = build_logger("gradio_web_server", "gradio_web_server.log")


def get_api_provider_stream_iter(
    conv,
    model_name,
    model_api_dict,
    temperature,
    top_p,
    max_new_tokens,
    state,
):
    if model_api_dict["api_type"] == "openai":
        if model_api_dict["vision-arena"]:
            prompt = conv.to_openai_vision_api_messages()
        else:
            prompt = conv.to_openai_api_messages()
        stream_iter = openai_api_stream_iter(
            model_api_dict["model_name"],
            prompt,
            temperature,
            top_p,
            max_new_tokens,
            api_base=model_api_dict["api_base"],
            api_key=model_api_dict["api_key"],
        )
    elif model_api_dict["api_type"] == "openai_assistant":
        last_prompt = conv.messages[-2][1]
        stream_iter = openai_assistant_api_stream_iter(
            state,
            last_prompt,
            assistant_id=model_api_dict["assistant_id"],
            api_key=model_api_dict["api_key"],
        )
    elif model_api_dict["api_type"] == "anthropic":
        if model_api_dict["vision-arena"]:
            prompt = conv.to_anthropic_vision_api_messages()
        else:
            prompt = conv.to_openai_api_messages()
        stream_iter = anthropic_api_stream_iter(
            model_name, prompt, temperature, top_p, max_new_tokens
        )
    elif model_api_dict["api_type"] == "anthropic_message":
        if model_api_dict["vision-arena"]:
            prompt = conv.to_anthropic_vision_api_messages()
        else:
            prompt = conv.to_openai_api_messages()
        stream_iter = anthropic_message_api_stream_iter(
            model_name, prompt, temperature, top_p, max_new_tokens
        )
    elif model_api_dict["api_type"] == "anthropic_message_vertex":
        if model_api_dict["vision-arena"]:
            prompt = conv.to_anthropic_vision_api_messages()
        else:
            prompt = conv.to_openai_api_messages()
        stream_iter = anthropic_message_api_stream_iter(
            model_api_dict["model_name"],
            prompt,
            temperature,
            top_p,
            max_new_tokens,
            vertex_ai=True,
        )
    elif model_api_dict["api_type"] == "gemini":
        prompt = conv.to_gemini_api_messages()
        stream_iter = gemini_api_stream_iter(
            model_api_dict["model_name"],
            prompt,
            temperature,
            top_p,
            max_new_tokens,
            api_key=model_api_dict["api_key"],
        )
    elif model_api_dict["api_type"] == "bard":
        prompt = conv.to_openai_api_messages()
        stream_iter = bard_api_stream_iter(
            model_api_dict["model_name"],
            prompt,
            temperature,
            top_p,
            api_key=model_api_dict["api_key"],
        )
    elif model_api_dict["api_type"] == "mistral":
        prompt = conv.to_openai_api_messages()
        stream_iter = mistral_api_stream_iter(
            model_name, prompt, temperature, top_p, max_new_tokens
        )
    elif model_api_dict["api_type"] == "nvidia":
        prompt = conv.to_openai_api_messages()
        stream_iter = nvidia_api_stream_iter(
            model_name,
            prompt,
            temperature,
            top_p,
            max_new_tokens,
            model_api_dict["api_base"],
        )
    elif model_api_dict["api_type"] == "ai2":
        prompt = conv.to_openai_api_messages()
        stream_iter = ai2_api_stream_iter(
            model_name,
            model_api_dict["model_name"],
            prompt,
            temperature,
            top_p,
            max_new_tokens,
            api_base=model_api_dict["api_base"],
            api_key=model_api_dict["api_key"],
        )
    elif model_api_dict["api_type"] == "vertex":
        prompt = conv.to_vertex_api_messages()
        stream_iter = vertex_api_stream_iter(
            model_name, prompt, temperature, top_p, max_new_tokens
        )
    elif model_api_dict["api_type"] == "yandexgpt":
        # note: top_p parameter is unused by yandexgpt

        messages = []
        if conv.system_message:
            messages.append({"role": "system", "text": conv.system_message})
        messages += [
            {"role": role, "text": text}
            for role, text in conv.messages
            if text is not None
        ]

        fixed_temperature = model_api_dict.get("fixed_temperature")
        if fixed_temperature is not None:
            temperature = fixed_temperature

        stream_iter = yandexgpt_api_stream_iter(
            model_name=model_api_dict["model_name"],
            messages=messages,
            temperature=temperature,
            max_tokens=max_new_tokens,
            api_base=model_api_dict["api_base"],
            api_key=model_api_dict.get("api_key"),
            folder_id=model_api_dict.get("folder_id"),
        )
    elif model_api_dict["api_type"] == "cohere":
        messages = conv.to_openai_api_messages()
        stream_iter = cohere_api_stream_iter(
            client_name=model_api_dict.get("client_name", "FastChat"),
            model_id=model_api_dict["model_name"],
            messages=messages,
            temperature=temperature,
            top_p=top_p,
            max_new_tokens=max_new_tokens,
            api_base=model_api_dict["api_base"],
            api_key=model_api_dict["api_key"],
        )
    elif model_api_dict["api_type"] == "reka":
        messages = conv.to_reka_api_messages()
        stream_iter = reka_api_stream_iter(
            model_name=model_api_dict["model_name"],
            messages=messages,
            temperature=temperature,
            top_p=top_p,
            max_new_tokens=max_new_tokens,
            api_base=model_api_dict["api_base"],
            api_key=model_api_dict["api_key"],
        )
    else:
        raise NotImplementedError()

    return stream_iter


def openai_api_stream_iter(
    model_name,
    messages,
    temperature,
    top_p,
    max_new_tokens,
    api_base=None,
    api_key=None,
):
    import openai

    api_key = api_key or os.environ["OPENAI_API_KEY"]

    if "azure" in model_name:
        client = openai.AzureOpenAI(
            api_version="2023-07-01-preview",
            azure_endpoint=api_base or "https://api.openai.com/v1",
            api_key=api_key,
        )
    else:
        client = openai.OpenAI(
            base_url=api_base or "https://api.openai.com/v1",
            api_key=api_key,
            timeout=180,
        )

    # Make requests for logging
    text_messages = []
    for message in messages:
        if type(message["content"]) == str:  # text-only model
            text_messages.append(message)
        else:  # vision model
            filtered_content_list = [
                content for content in message["content"] if content["type"] == "text"
            ]
            text_messages.append(
                {"role": message["role"], "content": filtered_content_list}
            )

    gen_params = {
        "model": model_name,
        "prompt": text_messages,
        "temperature": temperature,
        "top_p": top_p,
        "max_new_tokens": max_new_tokens,
    }
    logger.info(f"==== request ====\n{gen_params}")

    res = client.chat.completions.create(
        model=model_name,
        messages=messages,
        temperature=temperature,
        max_tokens=max_new_tokens,
        stream=True,
    )
    text = ""
    for chunk in res:
        if len(chunk.choices) > 0:
            text += chunk.choices[0].delta.content or ""
            data = {
                "text": text,
                "error_code": 0,
            }
            yield data


def upload_openai_file_to_gcs(file_id):
    import openai
    from google.cloud import storage

    storage_client = storage.Client()

    file = openai.files.content(file_id)
    # upload file to GCS
    bucket = storage_client.get_bucket("arena_user_content")
    blob = bucket.blob(f"{file_id}")
    blob.upload_from_string(file.read())
    blob.make_public()
    return blob.public_url


def openai_assistant_api_stream_iter(
    state,
    prompt,
    assistant_id,
    api_key=None,
):
    import openai
    import base64

    api_key = api_key or os.environ["OPENAI_API_KEY"]
    client = openai.OpenAI(base_url="https://api.openai.com/v1", api_key=api_key)

    if state.oai_thread_id is None:
        logger.info("==== create thread ====")
        thread = client.beta.threads.create()
        state.oai_thread_id = thread.id
    logger.info(f"==== thread_id ====\n{state.oai_thread_id}")
    thread_message = client.beta.threads.messages.with_raw_response.create(
        state.oai_thread_id,
        role="user",
        content=prompt,
        timeout=3,
    )
    # logger.info(f"header {thread_message.headers}")
    thread_message = thread_message.parse()
    # Make requests
    gen_params = {
        "assistant_id": assistant_id,
        "thread_id": state.oai_thread_id,
        "message": prompt,
    }
    logger.info(f"==== request ====\n{gen_params}")

    res = requests.post(
        f"https://api.openai.com/v1/threads/{state.oai_thread_id}/runs",
        headers={
            "Authorization": f"Bearer {api_key}",
            "Content-Type": "application/json",
            "OpenAI-Beta": "assistants=v1",
        },
        json={"assistant_id": assistant_id, "stream": True},
        timeout=30,
        stream=True,
    )

    list_of_text = []
    list_of_raw_text = []
    offset_idx = 0
    full_ret_text = ""
    idx_mapping = {}
    for line in res.iter_lines():
        if not line:
            continue
        data = line.decode("utf-8")
        # logger.info("data:", data)
        if data.endswith("[DONE]"):
            break
        if data.startswith("event"):
            event = data.split(":")[1].strip()
            if event == "thread.message.completed":
                offset_idx += len(list_of_text)
            continue
        data = json.loads(data[6:])

        if data.get("status") == "failed":
            yield {
                "text": f"**API REQUEST ERROR** Reason: {data['last_error']['message']}",
                "error_code": 1,
            }
            return

        if data.get("status") == "completed":
            logger.info(f"[debug]: {data}")

        if data["object"] != "thread.message.delta":
            continue

        for delta in data["delta"]["content"]:
            text_index = delta["index"] + offset_idx
            if len(list_of_text) <= text_index:
                list_of_text.append("")
                list_of_raw_text.append("")

            text = list_of_text[text_index]
            raw_text = list_of_raw_text[text_index]

            if delta["type"] == "text":
                # text, url_citation or file_path
                content = delta["text"]
                if "annotations" in content and len(content["annotations"]) > 0:
                    annotations = content["annotations"]

                    cur_offset = 0
                    raw_text_copy = raw_text
                    for anno in annotations:
                        if anno["type"] == "url_citation":
                            anno_text = anno["text"]
                            if anno_text not in idx_mapping:
                                continue
                            citation_number = idx_mapping[anno_text]

                            start_idx = anno["start_index"] + cur_offset
                            end_idx = anno["end_index"] + cur_offset
                            url = anno["url_citation"]["url"]

                            citation = f" [[{citation_number}]]({url})"
                            raw_text_copy = (
                                raw_text_copy[:start_idx]
                                + citation
                                + raw_text_copy[end_idx:]
                            )
                            cur_offset += len(citation) - (end_idx - start_idx)
                        elif anno["type"] == "file_path":
                            file_public_url = upload_openai_file_to_gcs(
                                anno["file_path"]["file_id"]
                            )
                            raw_text_copy = raw_text_copy.replace(
                                anno["text"], f"{file_public_url}"
                            )
                    text = raw_text_copy
                else:
                    text_content = content["value"]
                    raw_text += text_content

                    # re-index citation number
                    pattern = r"【\d+】"
                    matches = re.findall(pattern, content["value"])
                    if len(matches) > 0:
                        for match in matches:
                            if match not in idx_mapping:
                                idx_mapping[match] = len(idx_mapping) + 1
                            citation_number = idx_mapping[match]
                            text_content = text_content.replace(
                                match, f" [{citation_number}]"
                            )
                    text += text_content
                    # yield {"text": text, "error_code": 0}
            elif delta["type"] == "image_file":
                image_public_url = upload_openai_file_to_gcs(
                    delta["image_file"]["file_id"]
                )
                # raw_text += f"![image]({image_public_url})"
                text += f"![image]({image_public_url})"

            list_of_text[text_index] = text
            list_of_raw_text[text_index] = raw_text

            full_ret_text = "\n".join(list_of_text)
            yield {"text": full_ret_text, "error_code": 0}


def anthropic_api_stream_iter(model_name, prompt, temperature, top_p, max_new_tokens):
    import anthropic

    c = anthropic.Anthropic(api_key=os.environ["ANTHROPIC_API_KEY"])

    # Make requests
    gen_params = {
        "model": model_name,
        "prompt": prompt,
        "temperature": temperature,
        "top_p": top_p,
        "max_new_tokens": max_new_tokens,
    }
    logger.info(f"==== request ====\n{gen_params}")

    res = c.completions.create(
        prompt=prompt,
        stop_sequences=[anthropic.HUMAN_PROMPT],
        max_tokens_to_sample=max_new_tokens,
        temperature=temperature,
        top_p=top_p,
        model=model_name,
        stream=True,
    )
    text = ""
    for chunk in res:
        text += chunk.completion
        data = {
            "text": text,
            "error_code": 0,
        }
        yield data


def anthropic_message_api_stream_iter(
    model_name,
    messages,
    temperature,
    top_p,
    max_new_tokens,
    vertex_ai=False,
):
    import anthropic

    if vertex_ai:
        client = anthropic.AnthropicVertex(
            region=os.environ["GCP_LOCATION"],
            project_id=os.environ["GCP_PROJECT_ID"],
            max_retries=5,
        )
    else:
        client = anthropic.Anthropic(
            api_key=os.environ["ANTHROPIC_API_KEY"],
            max_retries=5,
        )

    text_messages = []
    for message in messages:
        if type(message["content"]) == str:  # text-only model
            text_messages.append(message)
        else:  # vision model
            filtered_content_list = [
                content for content in message["content"] if content["type"] == "text"
            ]
            text_messages.append(
                {"role": message["role"], "content": filtered_content_list}
            )

    # Make requests for logging
    gen_params = {
        "model": model_name,
        "prompt": text_messages,
        "temperature": temperature,
        "top_p": top_p,
        "max_new_tokens": max_new_tokens,
    }
    logger.info(f"==== request ====\n{gen_params}")

    system_prompt = ""
    if messages[0]["role"] == "system":
        if type(messages[0]["content"]) == dict:
            system_prompt = messages[0]["content"]["text"]
        elif type(messages[0]["content"]) == str:
            system_prompt = messages[0]["content"]
        # remove system prompt
        messages = messages[1:]

    text = ""
    with client.messages.stream(
        temperature=temperature,
        top_p=top_p,
        max_tokens=max_new_tokens,
        messages=messages,
        model=model_name,
        system=system_prompt,
    ) as stream:
        for chunk in stream.text_stream:
            text += chunk
            data = {
                "text": text,
                "error_code": 0,
            }
            yield data


def gemini_api_stream_iter(
    model_name, messages, temperature, top_p, max_new_tokens, api_key=None
):
    import google.generativeai as genai  # pip install google-generativeai

    if api_key is None:
        api_key = os.environ["GEMINI_API_KEY"]
    genai.configure(api_key=api_key)

    generation_config = {
        "temperature": temperature,
        "max_output_tokens": max_new_tokens,
        "top_p": top_p,
    }
    params = {
        "model": model_name,
        "prompt": messages,
    }
    params.update(generation_config)
    logger.info(f"==== request ====\n{params}")

    safety_settings = [
        {"category": "HARM_CATEGORY_HARASSMENT", "threshold": "BLOCK_NONE"},
        {"category": "HARM_CATEGORY_HATE_SPEECH", "threshold": "BLOCK_NONE"},
        {"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT", "threshold": "BLOCK_NONE"},
        {"category": "HARM_CATEGORY_DANGEROUS_CONTENT", "threshold": "BLOCK_NONE"},
    ]

    history = []
    system_prompt = None
    for message in messages[:-1]:
        if message["role"] == "system":
            system_prompt = message["content"]
            continue
        history.append({"role": message["role"], "parts": message["content"]})

    model = genai.GenerativeModel(
        model_name=model_name,
        system_instruction=system_prompt,
        generation_config=generation_config,
        safety_settings=safety_settings,
    )
    convo = model.start_chat(history=history)
    response = convo.send_message(messages[-1]["content"], stream=True)

    try:
        text = ""
        for chunk in response:
            text += chunk.candidates[0].content.parts[0].text
            data = {
                "text": text,
                "error_code": 0,
            }
            yield data
    except Exception as e:
        logger.error(f"==== error ====\n{e}")
        reason = chunk.candidates
        yield {
            "text": f"**API REQUEST ERROR** Reason: {reason}.",
            "error_code": 1,
        }


def bard_api_stream_iter(model_name, conv, temperature, top_p, api_key=None):
    del top_p  # not supported
    del temperature  # not supported

    if api_key is None:
        api_key = os.environ["BARD_API_KEY"]

    # convert conv to conv_bard
    conv_bard = []
    for turn in conv:
        if turn["role"] == "user":
            conv_bard.append({"author": "0", "content": turn["content"]})
        elif turn["role"] == "assistant":
            conv_bard.append({"author": "1", "content": turn["content"]})
        else:
            raise ValueError(f"Unsupported role: {turn['role']}")

    params = {
        "model": model_name,
        "prompt": conv_bard,
    }
    logger.info(f"==== request ====\n{params}")

    try:
        res = requests.post(
            f"https://generativelanguage.googleapis.com/v1beta2/models/{model_name}:generateMessage?key={api_key}",
            json={
                "prompt": {
                    "messages": conv_bard,
                },
            },
            timeout=30,
        )
    except Exception as e:
        logger.error(f"==== error ====\n{e}")
        yield {
            "text": f"**API REQUEST ERROR** Reason: {e}.",
            "error_code": 1,
        }

    if res.status_code != 200:
        logger.error(f"==== error ==== ({res.status_code}): {res.text}")
        yield {
            "text": f"**API REQUEST ERROR** Reason: status code {res.status_code}.",
            "error_code": 1,
        }

    response_json = res.json()
    if "candidates" not in response_json:
        logger.error(f"==== error ==== response blocked: {response_json}")
        reason = response_json["filters"][0]["reason"]
        yield {
            "text": f"**API REQUEST ERROR** Reason: {reason}.",
            "error_code": 1,
        }

    response = response_json["candidates"][0]["content"]
    pos = 0
    while pos < len(response):
        # simulate token streaming
        pos += random.randint(3, 6)
        time.sleep(0.002)
        data = {
            "text": response[:pos],
            "error_code": 0,
        }
        yield data


def ai2_api_stream_iter(
    model_name,
    model_id,
    messages,
    temperature,
    top_p,
    max_new_tokens,
    api_key=None,
    api_base=None,
):
    # get keys and needed values
    ai2_key = api_key or os.environ.get("AI2_API_KEY")
    api_base = api_base or "https://inferd.allen.ai/api/v1/infer"

    # Make requests
    gen_params = {
        "model": model_name,
        "prompt": messages,
        "temperature": temperature,
        "top_p": top_p,
        "max_new_tokens": max_new_tokens,
    }
    logger.info(f"==== request ====\n{gen_params}")

    # AI2 uses vLLM, which requires that `top_p` be 1.0 for greedy sampling:
    # https://github.com/vllm-project/vllm/blob/v0.1.7/vllm/sampling_params.py#L156-L157
    if temperature == 0.0 and top_p < 1.0:
        raise ValueError("top_p must be 1 when temperature is 0.0")

    res = requests.post(
        api_base,
        stream=True,
        headers={"Authorization": f"Bearer {ai2_key}"},
        json={
            "model_id": model_id,
            # This input format is specific to the Tulu2 model. Other models
            # may require different input formats. See the model's schema
            # documentation on InferD for more information.
            "input": {
                "messages": messages,
                "opts": {
                    "max_tokens": max_new_tokens,
                    "temperature": temperature,
                    "top_p": top_p,
                    "logprobs": 1,  # increase for more choices
                },
            },
        },
        timeout=5,
    )

    if res.status_code != 200:
        logger.error(f"unexpected response ({res.status_code}): {res.text}")
        raise ValueError("unexpected response from InferD", res)

    text = ""
    for line in res.iter_lines():
        if line:
            part = json.loads(line)
            if "result" in part and "output" in part["result"]:
                for t in part["result"]["output"]["text"]:
                    text += t
            else:
                logger.error(f"unexpected part: {part}")
                raise ValueError("empty result in InferD response")

            data = {
                "text": text,
                "error_code": 0,
            }
            yield data


def mistral_api_stream_iter(model_name, messages, temperature, top_p, max_new_tokens):
    from mistralai.client import MistralClient
    from mistralai.models.chat_completion import ChatMessage

    api_key = os.environ["MISTRAL_API_KEY"]

    client = MistralClient(api_key=api_key, timeout=5)

    # Make requests
    gen_params = {
        "model": model_name,
        "prompt": messages,
        "temperature": temperature,
        "top_p": top_p,
        "max_new_tokens": max_new_tokens,
    }
    logger.info(f"==== request ====\n{gen_params}")

    new_messages = [
        ChatMessage(role=message["role"], content=message["content"])
        for message in messages
    ]

    res = client.chat_stream(
        model=model_name,
        temperature=temperature,
        messages=new_messages,
        max_tokens=max_new_tokens,
        top_p=top_p,
    )

    text = ""
    for chunk in res:
        if chunk.choices[0].delta.content is not None:
            text += chunk.choices[0].delta.content
            data = {
                "text": text,
                "error_code": 0,
            }
            yield data


def nvidia_api_stream_iter(model_name, messages, temp, top_p, max_tokens, api_base):
    api_key = os.environ["NVIDIA_API_KEY"]
    headers = {
        "Authorization": f"Bearer {api_key}",
        "accept": "text/event-stream",
        "content-type": "application/json",
    }
    # nvidia api does not accept 0 temperature
    if temp == 0.0:
        temp = 0.000001

    payload = {
        "messages": messages,
        "temperature": temp,
        "top_p": top_p,
        "max_tokens": max_tokens,
        "seed": 42,
        "stream": True,
    }
    logger.info(f"==== request ====\n{payload}")

    response = requests.post(
        api_base, headers=headers, json=payload, stream=True, timeout=1
    )
    text = ""
    for line in response.iter_lines():
        if line:
            data = line.decode("utf-8")
            if data.endswith("[DONE]"):
                break
            data = json.loads(data[6:])["choices"][0]["delta"]["content"]
            text += data
            yield {"text": text, "error_code": 0}


def yandexgpt_api_stream_iter(
    model_name, messages, temperature, max_tokens, api_base, api_key, folder_id
):
    api_key = api_key or os.environ["YANDEXGPT_API_KEY"]
    headers = {
        "Authorization": f"Api-Key {api_key}",
        "content-type": "application/json",
    }

    payload = {
        "modelUri": f"gpt://{folder_id}/{model_name}",
        "completionOptions": {
            "temperature": temperature,
            "max_tokens": max_tokens,
            "stream": True,
        },
        "messages": messages,
    }
    logger.info(f"==== request ====\n{payload}")

    # https://llm.api.cloud.yandex.net/foundationModels/v1/completion
    response = requests.post(
        api_base, headers=headers, json=payload, stream=True, timeout=60
    )
    text = ""
    for line in response.iter_lines():
        if line:
            data = json.loads(line.decode("utf-8"))
            data = data["result"]
            top_alternative = data["alternatives"][0]
            text = top_alternative["message"]["text"]
            yield {"text": text, "error_code": 0}

            status = top_alternative["status"]
            if status in (
                "ALTERNATIVE_STATUS_FINAL",
                "ALTERNATIVE_STATUS_TRUNCATED_FINAL",
            ):
                break


def cohere_api_stream_iter(
    client_name: str,
    model_id: str,
    messages: list,
    temperature: Optional[
        float
    ] = None,  # The SDK or API handles None for all parameters following
    top_p: Optional[float] = None,
    max_new_tokens: Optional[int] = None,
    api_key: Optional[str] = None,  # default is env var CO_API_KEY
    api_base: Optional[str] = None,
):
    import cohere

    OPENAI_TO_COHERE_ROLE_MAP = {
        "user": "User",
        "assistant": "Chatbot",
        "system": "System",
    }

    client = cohere.Client(
        api_key=api_key,
        base_url=api_base,
        client_name=client_name,
    )

    # prepare and log requests
    chat_history = [
        dict(
            role=OPENAI_TO_COHERE_ROLE_MAP[message["role"]], message=message["content"]
        )
        for message in messages[:-1]
    ]
    actual_prompt = messages[-1]["content"]

    gen_params = {
        "model": model_id,
        "messages": messages,
        "chat_history": chat_history,
        "prompt": actual_prompt,
        "temperature": temperature,
        "top_p": top_p,
        "max_new_tokens": max_new_tokens,
    }
    logger.info(f"==== request ====\n{gen_params}")

    # make request and stream response
    res = client.chat_stream(
        message=actual_prompt,
        chat_history=chat_history,
        model=model_id,
        temperature=temperature,
        max_tokens=max_new_tokens,
        p=top_p,
    )
    try:
        text = ""
        for streaming_item in res:
            if streaming_item.event_type == "text-generation":
                text += streaming_item.text
                yield {"text": text, "error_code": 0}
    except cohere.core.ApiError as e:
        logger.error(f"==== error from cohere api: {e} ====")
        yield {
            "text": f"**API REQUEST ERROR** Reason: {e}",
            "error_code": 1,
        }


def vertex_api_stream_iter(model_name, messages, temperature, top_p, max_new_tokens):
    import vertexai
    from vertexai import generative_models
    from vertexai.generative_models import (
        GenerationConfig,
        GenerativeModel,
        Image,
    )

    project_id = os.environ.get("GCP_PROJECT_ID", None)
    location = os.environ.get("GCP_LOCATION", None)
    vertexai.init(project=project_id, location=location)

    text_messages = []
    for message in messages:
        if type(message) == str:
            text_messages.append(message)

    gen_params = {
        "model": model_name,
        "prompt": text_messages,
        "temperature": temperature,
        "top_p": top_p,
        "max_new_tokens": max_new_tokens,
    }
    logger.info(f"==== request ====\n{gen_params}")

    safety_settings = [
        generative_models.SafetySetting(
            category=generative_models.HarmCategory.HARM_CATEGORY_HARASSMENT,
            threshold=generative_models.HarmBlockThreshold.BLOCK_NONE,
        ),
        generative_models.SafetySetting(
            category=generative_models.HarmCategory.HARM_CATEGORY_HATE_SPEECH,
            threshold=generative_models.HarmBlockThreshold.BLOCK_NONE,
        ),
        generative_models.SafetySetting(
            category=generative_models.HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT,
            threshold=generative_models.HarmBlockThreshold.BLOCK_NONE,
        ),
        generative_models.SafetySetting(
            category=generative_models.HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT,
            threshold=generative_models.HarmBlockThreshold.BLOCK_NONE,
        ),
    ]
    generator = GenerativeModel(model_name).generate_content(
        messages,
        stream=True,
        generation_config=GenerationConfig(
            top_p=top_p, max_output_tokens=max_new_tokens, temperature=temperature
        ),
        safety_settings=safety_settings,
    )

    ret = ""
    for chunk in generator:
        # NOTE(chris): This may be a vertex api error, below is HOTFIX: https://github.com/googleapis/python-aiplatform/issues/3129
        ret += chunk.candidates[0].content.parts[0]._raw_part.text
        # ret += chunk.text
        data = {
            "text": ret,
            "error_code": 0,
        }
        yield data


def reka_api_stream_iter(
    model_name: str,
    messages: list,
    temperature: Optional[
        float
    ] = None,  # The SDK or API handles None for all parameters following
    top_p: Optional[float] = None,
    max_new_tokens: Optional[int] = None,
    api_key: Optional[str] = None,  # default is env var CO_API_KEY
    api_base: Optional[str] = None,
):
    api_key = api_key or os.environ["REKA_API_KEY"]

    use_search_engine = False
    if "-online" in model_name:
        model_name = model_name.replace("-online", "")
        use_search_engine = True
    request = {
        "model_name": model_name,
        "conversation_history": messages,
        "temperature": temperature,
        "request_output_len": max_new_tokens,
        "runtime_top_p": top_p,
        "stream": True,
        "use_search_engine": use_search_engine,
    }

    # Make requests for logging
    text_messages = []
    for message in messages:
        text_messages.append({"type": message["type"], "text": message["text"]})
    logged_request = dict(request)
    logged_request["conversation_history"] = text_messages

    logger.info(f"==== request ====\n{logged_request}")

    response = requests.post(
        api_base,
        stream=True,
        json=request,
        headers={
            "X-Api-Key": api_key,
        },
    )

    if response.status_code != 200:
        error_message = response.text
        logger.error(f"==== error from reka api: {error_message} ====")
        yield {
            "text": f"**API REQUEST ERROR** Reason: {error_message}",
            "error_code": 1,
        }
        return

    for line in response.iter_lines():
        line = line.decode("utf8")
        if not line.startswith("data: "):
            continue
        gen = json.loads(line[6:])
        yield {"text": gen["text"], "error_code": 0}