File size: 12,383 Bytes
6dc0c9c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 |
"""
Clean chatbot arena battle log.
Usage:
python3 clean_battle_data.py --mode conv_release
"""
import argparse
import datetime
import json
import os
from pytz import timezone
import time
from tqdm import tqdm
from multiprocessing import Pool
import tiktoken
from collections import Counter
import shortuuid
from fastchat.serve.monitor.basic_stats import get_log_files, NUM_SERVERS
from fastchat.utils import detect_language
VOTES = ["tievote", "leftvote", "rightvote", "bothbad_vote"]
IDENTITY_WORDS = [
"vicuna",
"lmsys",
"koala",
"uc berkeley",
"open assistant",
"laion",
"chatglm",
"chatgpt",
"gpt-4",
"openai",
"anthropic",
"claude",
"bard",
"palm",
"lamda",
"google",
"gemini",
"llama",
"qianwan",
"qwen",
"alibaba",
"mistral",
"zhipu",
"KEG lab",
"01.AI",
"AI2",
"Tülu",
"Tulu",
"deepseek",
"hermes",
"cohere",
"DBRX",
"databricks",
]
ERROR_WORDS = [
"NETWORK ERROR DUE TO HIGH TRAFFIC. PLEASE REGENERATE OR REFRESH THIS PAGE.",
"$MODERATION$ YOUR INPUT VIOLATES OUR CONTENT MODERATION GUIDELINES.",
"API REQUEST ERROR. Please increase the number of max tokens.",
"**API REQUEST ERROR** Reason: The response was blocked.",
"**API REQUEST ERROR**",
]
UNFINISHED_WORDS = [
"▌",
'<span class="cursor">',
]
for i in range(len(IDENTITY_WORDS)):
IDENTITY_WORDS[i] = IDENTITY_WORDS[i].lower()
for i in range(len(ERROR_WORDS)):
ERROR_WORDS[i] = ERROR_WORDS[i].lower()
def remove_html(raw):
if isinstance(raw, str) and raw.startswith("<h3>"):
return raw[raw.find(": ") + 2 : -len("</h3>\n")]
return raw
def to_openai_format(messages):
roles = ["user", "assistant"]
ret = []
for i, x in enumerate(messages):
ret.append({"role": roles[i % 2], "content": x[1]})
return ret
def replace_model_name(old_name, tstamp):
replace_dict = {
"bard": "palm-2",
"claude-v1": "claude-1",
"claude-instant-v1": "claude-instant-1",
"oasst-sft-1-pythia-12b": "oasst-pythia-12b",
"claude-2": "claude-2.0",
"StripedHyena-Nous-7B": "stripedhyena-nous-7b",
"gpt-4-turbo": "gpt-4-1106-preview",
"gpt-4-0125-assistants-api": "gpt-4-turbo-browsing",
}
if old_name in ["gpt-4", "gpt-3.5-turbo"]:
if tstamp > 1687849200:
return old_name + "-0613"
else:
return old_name + "-0314"
if old_name in replace_dict:
return replace_dict[old_name]
return old_name
def read_file(filename):
data = []
for retry in range(5):
try:
# lines = open(filename).readlines()
for l in open(filename):
row = json.loads(l)
if row["type"] in VOTES:
data.append(row)
break
except FileNotFoundError:
time.sleep(2)
return data
def read_file_parallel(log_files, num_threads=16):
data_all = []
with Pool(num_threads) as p:
ret_all = list(tqdm(p.imap(read_file, log_files), total=len(log_files)))
for ret in ret_all:
data_all.extend(ret)
return data_all
def process_data(
data,
exclude_model_names,
sanitize_ip,
ban_ip_list,
):
encoding = tiktoken.encoding_for_model("gpt-3.5-turbo")
convert_type = {
"leftvote": "model_a",
"rightvote": "model_b",
"tievote": "tie",
"bothbad_vote": "tie (bothbad)",
}
all_ips = dict()
count_dict = {
"anony": 0,
"invalid": 0,
"leaked_identity": 0,
"banned": 0,
"error": 0,
"unfinished": 0,
"none_msg": 0,
"exclude_model": 0,
}
count_leak = {}
battles = []
for row in data:
flag_anony = False
flag_leaked_identity = False
flag_error = False
flag_unfinished = False
flag_none_msg = False
if row["models"][0] is None or row["models"][1] is None:
continue
# Resolve model names
models_public = [remove_html(row["models"][0]), remove_html(row["models"][1])]
if "model_name" in row["states"][0]:
models_hidden = [
row["states"][0]["model_name"],
row["states"][1]["model_name"],
]
if models_hidden[0] is None:
models_hidden = models_public
else:
models_hidden = models_public
if (models_public[0] == "" and models_public[1] != "") or (
models_public[1] == "" and models_public[0] != ""
):
count_dict["invalid"] += 1
continue
if models_public[0] == "" or models_public[0] == "Model A":
flag_anony = True
models = models_hidden
else:
flag_anony = False
models = models_public
if (
models_hidden[0] not in models_public[0]
or models_hidden[1] not in models_public[1]
):
count_dict["invalid"] += 1
continue
# Detect langauge
state = row["states"][0]
if state["offset"] >= len(state["messages"]):
count_dict["invalid"] += 1
continue
lang_code = detect_language(state["messages"][state["offset"]][1])
# Drop conversations if the model names are leaked
messages = ""
for i in range(2):
state = row["states"][i]
for _, (role, msg) in enumerate(state["messages"][state["offset"] :]):
if msg:
messages += msg.lower()
else:
flag_none_msg = True
for word in IDENTITY_WORDS:
if word in messages:
if word not in count_leak:
count_leak[word] = 0
count_leak[word] += 1
flag_leaked_identity = True
break
for word in ERROR_WORDS:
if word in messages:
flag_error = True
break
for word in UNFINISHED_WORDS:
if word in messages:
flag_unfinished = True
break
if flag_none_msg:
count_dict["none_msg"] += 1
continue
if flag_leaked_identity:
count_dict["leaked_identity"] += 1
continue
if flag_error:
count_dict["error"] += 1
continue
if flag_unfinished:
count_dict["unfinished"] += 1
continue
# Replace bard with palm
models = [replace_model_name(m, row["tstamp"]) for m in models]
# Exclude certain models
if exclude_model_names and any(x in exclude_model_names for x in models):
count_dict["exclude_model"] += 1
continue
question_id = row["states"][0]["conv_id"]
conversation_a = to_openai_format(
row["states"][0]["messages"][row["states"][0]["offset"] :]
)
conversation_b = to_openai_format(
row["states"][1]["messages"][row["states"][1]["offset"] :]
)
ip = row["ip"]
if ip not in all_ips:
all_ips[ip] = {"ip": ip, "count": 0, "sanitized_id": shortuuid.uuid()}
all_ips[ip]["count"] += 1
if sanitize_ip:
user_id = f"{all_ips[ip]['sanitized_id']}"
else:
user_id = f"{all_ips[ip]['ip']}"
if ban_ip_list is not None and ip in ban_ip_list:
count_dict["banned"] += 1
continue
if flag_anony:
count_dict["anony"] += 1
for conv in conversation_a:
conv["num_tokens"] = len(
encoding.encode(conv["content"], allowed_special="all")
)
for conv in conversation_b:
conv["num_tokens"] = len(
encoding.encode(conv["content"], allowed_special="all")
)
# Save the results
battles.append(
dict(
question_id=question_id,
model_a=models[0],
model_b=models[1],
winner=convert_type[row["type"]],
judge=f"arena_user_{user_id}",
conversation_a=conversation_a,
conversation_b=conversation_b,
turn=len(conversation_a) // 2,
anony=flag_anony,
language=lang_code,
tstamp=row["tstamp"],
)
)
return battles, count_dict, count_leak, all_ips
def clean_battle_data(
log_files,
exclude_model_names,
ban_ip_list=None,
sanitize_ip=False,
anony_only=False,
num_threads=16,
):
data = read_file_parallel(log_files, num_threads=16)
battles = []
count_dict = {}
count_leak = {}
all_ips = {}
with Pool(num_threads) as p:
# split data into chunks
chunk_size = len(data) // min(100, len(data))
data_chunks = [
data[i : i + chunk_size] for i in range(0, len(data), chunk_size)
]
args_list = [
(data_chunk, exclude_model_names, sanitize_ip, ban_ip_list)
for data_chunk in data_chunks
]
ret_all = list(tqdm(p.starmap(process_data, args_list), total=len(data_chunks)))
for ret in ret_all:
sub_battles, sub_count_dict, sub_count_leak, sub_all_ips = ret
battles.extend(sub_battles)
count_dict = dict(Counter(count_dict) + Counter(sub_count_dict))
count_leak = dict(Counter(count_leak) + Counter(sub_count_leak))
for ip in sub_all_ips:
if ip not in all_ips:
all_ips[ip] = sub_all_ips[ip]
else:
all_ips[ip]["count"] += sub_all_ips[ip]["count"]
battles.sort(key=lambda x: x["tstamp"])
last_updated_tstamp = battles[-1]["tstamp"]
last_updated_datetime = datetime.datetime.fromtimestamp(
last_updated_tstamp, tz=timezone("US/Pacific")
).strftime("%Y-%m-%d %H:%M:%S %Z")
print(f"#votes: {len(data)}")
print(count_dict)
print(f"#battles: {len(battles)}, #anony: {count_dict['anony']}")
print(f"last-updated: {last_updated_datetime}")
print(f"leaked_identity: {count_leak}")
if ban_ip_list is not None:
for ban_ip in ban_ip_list:
if ban_ip in all_ips:
del all_ips[ban_ip]
print("Top 30 IPs:")
print(sorted(all_ips.values(), key=lambda x: x["count"], reverse=True)[:30])
return battles
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--max-num-files", type=int)
parser.add_argument(
"--mode", type=str, choices=["simple", "conv_release"], default="simple"
)
parser.add_argument("--exclude-model-names", type=str, nargs="+")
parser.add_argument("--ban-ip-file", type=str)
parser.add_argument("--sanitize-ip", action="store_true", default=False)
args = parser.parse_args()
log_files = get_log_files(args.max_num_files)
ban_ip_list = json.load(open(args.ban_ip_file)) if args.ban_ip_file else None
battles = clean_battle_data(
log_files, args.exclude_model_names or [], ban_ip_list, args.sanitize_ip
)
last_updated_tstamp = battles[-1]["tstamp"]
cutoff_date = datetime.datetime.fromtimestamp(
last_updated_tstamp, tz=timezone("US/Pacific")
).strftime("%Y%m%d")
if args.mode == "simple":
for x in battles:
for key in [
"conversation_a",
"conversation_b",
"question_id",
]:
del x[key]
print("Samples:")
for i in range(4):
print(battles[i])
output = f"clean_battle_{cutoff_date}.json"
elif args.mode == "conv_release":
new_battles = []
for x in battles:
if not x["anony"]:
continue
for key in []:
del x[key]
new_battles.append(x)
battles = new_battles
output = f"clean_battle_conv_{cutoff_date}.json"
with open(output, "w", encoding="utf-8", errors="replace") as fout:
json.dump(battles, fout, indent=2, ensure_ascii=False)
print(f"Write cleaned data to {output}")
|