File size: 12,383 Bytes
6dc0c9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
"""
Clean chatbot arena battle log.

Usage:
python3 clean_battle_data.py --mode conv_release
"""
import argparse
import datetime
import json
import os
from pytz import timezone
import time

from tqdm import tqdm
from multiprocessing import Pool
import tiktoken
from collections import Counter
import shortuuid

from fastchat.serve.monitor.basic_stats import get_log_files, NUM_SERVERS
from fastchat.utils import detect_language


VOTES = ["tievote", "leftvote", "rightvote", "bothbad_vote"]
IDENTITY_WORDS = [
    "vicuna",
    "lmsys",
    "koala",
    "uc berkeley",
    "open assistant",
    "laion",
    "chatglm",
    "chatgpt",
    "gpt-4",
    "openai",
    "anthropic",
    "claude",
    "bard",
    "palm",
    "lamda",
    "google",
    "gemini",
    "llama",
    "qianwan",
    "qwen",
    "alibaba",
    "mistral",
    "zhipu",
    "KEG lab",
    "01.AI",
    "AI2",
    "Tülu",
    "Tulu",
    "deepseek",
    "hermes",
    "cohere",
    "DBRX",
    "databricks",
]

ERROR_WORDS = [
    "NETWORK ERROR DUE TO HIGH TRAFFIC. PLEASE REGENERATE OR REFRESH THIS PAGE.",
    "$MODERATION$ YOUR INPUT VIOLATES OUR CONTENT MODERATION GUIDELINES.",
    "API REQUEST ERROR. Please increase the number of max tokens.",
    "**API REQUEST ERROR** Reason: The response was blocked.",
    "**API REQUEST ERROR**",
]

UNFINISHED_WORDS = [
    "▌",
    '<span class="cursor">',
]

for i in range(len(IDENTITY_WORDS)):
    IDENTITY_WORDS[i] = IDENTITY_WORDS[i].lower()

for i in range(len(ERROR_WORDS)):
    ERROR_WORDS[i] = ERROR_WORDS[i].lower()


def remove_html(raw):
    if isinstance(raw, str) and raw.startswith("<h3>"):
        return raw[raw.find(": ") + 2 : -len("</h3>\n")]
    return raw


def to_openai_format(messages):
    roles = ["user", "assistant"]
    ret = []
    for i, x in enumerate(messages):
        ret.append({"role": roles[i % 2], "content": x[1]})
    return ret


def replace_model_name(old_name, tstamp):
    replace_dict = {
        "bard": "palm-2",
        "claude-v1": "claude-1",
        "claude-instant-v1": "claude-instant-1",
        "oasst-sft-1-pythia-12b": "oasst-pythia-12b",
        "claude-2": "claude-2.0",
        "StripedHyena-Nous-7B": "stripedhyena-nous-7b",
        "gpt-4-turbo": "gpt-4-1106-preview",
        "gpt-4-0125-assistants-api": "gpt-4-turbo-browsing",
    }
    if old_name in ["gpt-4", "gpt-3.5-turbo"]:
        if tstamp > 1687849200:
            return old_name + "-0613"
        else:
            return old_name + "-0314"
    if old_name in replace_dict:
        return replace_dict[old_name]
    return old_name


def read_file(filename):
    data = []
    for retry in range(5):
        try:
            # lines = open(filename).readlines()
            for l in open(filename):
                row = json.loads(l)
                if row["type"] in VOTES:
                    data.append(row)
            break
        except FileNotFoundError:
            time.sleep(2)
    return data


def read_file_parallel(log_files, num_threads=16):
    data_all = []
    with Pool(num_threads) as p:
        ret_all = list(tqdm(p.imap(read_file, log_files), total=len(log_files)))
        for ret in ret_all:
            data_all.extend(ret)
    return data_all


def process_data(
    data,
    exclude_model_names,
    sanitize_ip,
    ban_ip_list,
):
    encoding = tiktoken.encoding_for_model("gpt-3.5-turbo")
    convert_type = {
        "leftvote": "model_a",
        "rightvote": "model_b",
        "tievote": "tie",
        "bothbad_vote": "tie (bothbad)",
    }

    all_ips = dict()

    count_dict = {
        "anony": 0,
        "invalid": 0,
        "leaked_identity": 0,
        "banned": 0,
        "error": 0,
        "unfinished": 0,
        "none_msg": 0,
        "exclude_model": 0,
    }
    count_leak = {}

    battles = []
    for row in data:
        flag_anony = False
        flag_leaked_identity = False
        flag_error = False
        flag_unfinished = False
        flag_none_msg = False

        if row["models"][0] is None or row["models"][1] is None:
            continue

        # Resolve model names
        models_public = [remove_html(row["models"][0]), remove_html(row["models"][1])]
        if "model_name" in row["states"][0]:
            models_hidden = [
                row["states"][0]["model_name"],
                row["states"][1]["model_name"],
            ]
            if models_hidden[0] is None:
                models_hidden = models_public
        else:
            models_hidden = models_public

        if (models_public[0] == "" and models_public[1] != "") or (
            models_public[1] == "" and models_public[0] != ""
        ):
            count_dict["invalid"] += 1
            continue

        if models_public[0] == "" or models_public[0] == "Model A":
            flag_anony = True
            models = models_hidden
        else:
            flag_anony = False
            models = models_public
            if (
                models_hidden[0] not in models_public[0]
                or models_hidden[1] not in models_public[1]
            ):
                count_dict["invalid"] += 1
                continue

        # Detect langauge
        state = row["states"][0]
        if state["offset"] >= len(state["messages"]):
            count_dict["invalid"] += 1
            continue
        lang_code = detect_language(state["messages"][state["offset"]][1])

        # Drop conversations if the model names are leaked
        messages = ""
        for i in range(2):
            state = row["states"][i]
            for _, (role, msg) in enumerate(state["messages"][state["offset"] :]):
                if msg:
                    messages += msg.lower()
                else:
                    flag_none_msg = True

        for word in IDENTITY_WORDS:
            if word in messages:
                if word not in count_leak:
                    count_leak[word] = 0
                count_leak[word] += 1
                flag_leaked_identity = True
                break

        for word in ERROR_WORDS:
            if word in messages:
                flag_error = True
                break

        for word in UNFINISHED_WORDS:
            if word in messages:
                flag_unfinished = True
                break

        if flag_none_msg:
            count_dict["none_msg"] += 1
            continue
        if flag_leaked_identity:
            count_dict["leaked_identity"] += 1
            continue
        if flag_error:
            count_dict["error"] += 1
            continue
        if flag_unfinished:
            count_dict["unfinished"] += 1
            continue

        # Replace bard with palm
        models = [replace_model_name(m, row["tstamp"]) for m in models]
        # Exclude certain models
        if exclude_model_names and any(x in exclude_model_names for x in models):
            count_dict["exclude_model"] += 1
            continue

        question_id = row["states"][0]["conv_id"]
        conversation_a = to_openai_format(
            row["states"][0]["messages"][row["states"][0]["offset"] :]
        )
        conversation_b = to_openai_format(
            row["states"][1]["messages"][row["states"][1]["offset"] :]
        )

        ip = row["ip"]
        if ip not in all_ips:
            all_ips[ip] = {"ip": ip, "count": 0, "sanitized_id": shortuuid.uuid()}
        all_ips[ip]["count"] += 1
        if sanitize_ip:
            user_id = f"{all_ips[ip]['sanitized_id']}"
        else:
            user_id = f"{all_ips[ip]['ip']}"

        if ban_ip_list is not None and ip in ban_ip_list:
            count_dict["banned"] += 1
            continue

        if flag_anony:
            count_dict["anony"] += 1

        for conv in conversation_a:
            conv["num_tokens"] = len(
                encoding.encode(conv["content"], allowed_special="all")
            )
        for conv in conversation_b:
            conv["num_tokens"] = len(
                encoding.encode(conv["content"], allowed_special="all")
            )

        # Save the results
        battles.append(
            dict(
                question_id=question_id,
                model_a=models[0],
                model_b=models[1],
                winner=convert_type[row["type"]],
                judge=f"arena_user_{user_id}",
                conversation_a=conversation_a,
                conversation_b=conversation_b,
                turn=len(conversation_a) // 2,
                anony=flag_anony,
                language=lang_code,
                tstamp=row["tstamp"],
            )
        )
    return battles, count_dict, count_leak, all_ips


def clean_battle_data(
    log_files,
    exclude_model_names,
    ban_ip_list=None,
    sanitize_ip=False,
    anony_only=False,
    num_threads=16,
):
    data = read_file_parallel(log_files, num_threads=16)

    battles = []
    count_dict = {}
    count_leak = {}
    all_ips = {}
    with Pool(num_threads) as p:
        # split data into chunks
        chunk_size = len(data) // min(100, len(data))
        data_chunks = [
            data[i : i + chunk_size] for i in range(0, len(data), chunk_size)
        ]

        args_list = [
            (data_chunk, exclude_model_names, sanitize_ip, ban_ip_list)
            for data_chunk in data_chunks
        ]
        ret_all = list(tqdm(p.starmap(process_data, args_list), total=len(data_chunks)))

        for ret in ret_all:
            sub_battles, sub_count_dict, sub_count_leak, sub_all_ips = ret
            battles.extend(sub_battles)
            count_dict = dict(Counter(count_dict) + Counter(sub_count_dict))
            count_leak = dict(Counter(count_leak) + Counter(sub_count_leak))
            for ip in sub_all_ips:
                if ip not in all_ips:
                    all_ips[ip] = sub_all_ips[ip]
                else:
                    all_ips[ip]["count"] += sub_all_ips[ip]["count"]
    battles.sort(key=lambda x: x["tstamp"])
    last_updated_tstamp = battles[-1]["tstamp"]

    last_updated_datetime = datetime.datetime.fromtimestamp(
        last_updated_tstamp, tz=timezone("US/Pacific")
    ).strftime("%Y-%m-%d %H:%M:%S %Z")

    print(f"#votes: {len(data)}")
    print(count_dict)
    print(f"#battles: {len(battles)}, #anony: {count_dict['anony']}")
    print(f"last-updated: {last_updated_datetime}")
    print(f"leaked_identity: {count_leak}")

    if ban_ip_list is not None:
        for ban_ip in ban_ip_list:
            if ban_ip in all_ips:
                del all_ips[ban_ip]
    print("Top 30 IPs:")
    print(sorted(all_ips.values(), key=lambda x: x["count"], reverse=True)[:30])
    return battles


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--max-num-files", type=int)
    parser.add_argument(
        "--mode", type=str, choices=["simple", "conv_release"], default="simple"
    )
    parser.add_argument("--exclude-model-names", type=str, nargs="+")
    parser.add_argument("--ban-ip-file", type=str)
    parser.add_argument("--sanitize-ip", action="store_true", default=False)
    args = parser.parse_args()

    log_files = get_log_files(args.max_num_files)
    ban_ip_list = json.load(open(args.ban_ip_file)) if args.ban_ip_file else None

    battles = clean_battle_data(
        log_files, args.exclude_model_names or [], ban_ip_list, args.sanitize_ip
    )
    last_updated_tstamp = battles[-1]["tstamp"]
    cutoff_date = datetime.datetime.fromtimestamp(
        last_updated_tstamp, tz=timezone("US/Pacific")
    ).strftime("%Y%m%d")

    if args.mode == "simple":
        for x in battles:
            for key in [
                "conversation_a",
                "conversation_b",
                "question_id",
            ]:
                del x[key]
        print("Samples:")
        for i in range(4):
            print(battles[i])
        output = f"clean_battle_{cutoff_date}.json"
    elif args.mode == "conv_release":
        new_battles = []
        for x in battles:
            if not x["anony"]:
                continue
            for key in []:
                del x[key]
            new_battles.append(x)
        battles = new_battles
        output = f"clean_battle_conv_{cutoff_date}.json"

    with open(output, "w", encoding="utf-8", errors="replace") as fout:
        json.dump(battles, fout, indent=2, ensure_ascii=False)
    print(f"Write cleaned data to {output}")