File size: 20,655 Bytes
6dc0c9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
import argparse
import ast
from collections import defaultdict
import datetime
import json
import math
import pickle
from pytz import timezone
from functools import partial

import numpy as np
import pandas as pd
import plotly.express as px
from tqdm import tqdm
from transformers import AutoTokenizer

from fastchat.model.model_registry import get_model_info
from fastchat.serve.monitor.basic_stats import get_log_files
from fastchat.serve.monitor.clean_battle_data import clean_battle_data

pd.options.display.float_format = "{:.2f}".format


def compute_elo(battles, K=4, SCALE=400, BASE=10, INIT_RATING=1000):
    rating = defaultdict(lambda: INIT_RATING)

    for rd, model_a, model_b, winner in battles[
        ["model_a", "model_b", "winner"]
    ].itertuples():
        ra = rating[model_a]
        rb = rating[model_b]
        ea = 1 / (1 + BASE ** ((rb - ra) / SCALE))
        eb = 1 / (1 + BASE ** ((ra - rb) / SCALE))
        if winner == "model_a":
            sa = 1
        elif winner == "model_b":
            sa = 0
        elif winner == "tie" or winner == "tie (bothbad)":
            sa = 0.5
        else:
            raise Exception(f"unexpected vote {winner}")
        rating[model_a] += K * (sa - ea)
        rating[model_b] += K * (1 - sa - eb)

    return dict(rating)


def get_bootstrap_result(battles, func_compute_elo, num_round=1000):
    rows = []
    for i in tqdm(range(num_round), desc="bootstrap"):
        tmp_battles = battles.sample(frac=1.0, replace=True)
        rows.append(func_compute_elo(tmp_battles))
    df = pd.DataFrame(rows)
    return df[df.median().sort_values(ascending=False).index]


def compute_elo_mle_with_tie(
    df, SCALE=400, BASE=10, INIT_RATING=1000, sample_weight=None
):
    from sklearn.linear_model import LogisticRegression

    ptbl_a_win = pd.pivot_table(
        df[df["winner"] == "model_a"],
        index="model_a",
        columns="model_b",
        aggfunc="size",
        fill_value=0,
    )
    ptbl_tie = pd.pivot_table(
        df[df["winner"].isin(["tie", "tie (bothbad)"])],
        index="model_a",
        columns="model_b",
        aggfunc="size",
        fill_value=0,
    )
    ptbl_tie = ptbl_tie + ptbl_tie.T
    ptbl_b_win = pd.pivot_table(
        df[df["winner"] == "model_b"],
        index="model_a",
        columns="model_b",
        aggfunc="size",
        fill_value=0,
    )
    ptbl_win = ptbl_a_win * 2 + ptbl_b_win.T * 2 + ptbl_tie

    models = pd.Series(np.arange(len(ptbl_win.index)), index=ptbl_win.index)

    p = len(models)
    X = np.zeros([p * (p - 1) * 2, p])
    Y = np.zeros(p * (p - 1) * 2)

    cur_row = 0
    sample_weights = []
    for m_a in ptbl_win.index:
        for m_b in ptbl_win.columns:
            if m_a == m_b:
                continue
            # if nan skip
            if math.isnan(ptbl_win.loc[m_a, m_b]) or math.isnan(ptbl_win.loc[m_b, m_a]):
                continue
            X[cur_row, models[m_a]] = +math.log(BASE)
            X[cur_row, models[m_b]] = -math.log(BASE)
            Y[cur_row] = 1.0
            sample_weights.append(ptbl_win.loc[m_a, m_b])

            X[cur_row + 1, models[m_a]] = math.log(BASE)
            X[cur_row + 1, models[m_b]] = -math.log(BASE)
            Y[cur_row + 1] = 0.0
            sample_weights.append(ptbl_win.loc[m_b, m_a])
            cur_row += 2
    X = X[:cur_row]
    Y = Y[:cur_row]

    lr = LogisticRegression(fit_intercept=False, penalty=None)
    lr.fit(X, Y, sample_weight=sample_weights)
    elo_scores = SCALE * lr.coef_[0] + INIT_RATING
    if "mixtral-8x7b-instruct-v0.1" in models.index:
        elo_scores += 1114 - elo_scores[models["mixtral-8x7b-instruct-v0.1"]]
    return pd.Series(elo_scores, index=models.index).sort_values(ascending=False)


def get_median_elo_from_bootstrap(bootstrap_df):
    median = dict(bootstrap_df.quantile(0.5))
    median = {k: int(v + 0.5) for k, v in median.items()}
    return median


def compute_pairwise_win_fraction(battles, model_order, limit_show_number=None):
    # Times each model wins as Model A
    a_win_ptbl = pd.pivot_table(
        battles[battles["winner"] == "model_a"],
        index="model_a",
        columns="model_b",
        aggfunc="size",
        fill_value=0,
    )

    # Table counting times each model wins as Model B
    b_win_ptbl = pd.pivot_table(
        battles[battles["winner"] == "model_b"],
        index="model_a",
        columns="model_b",
        aggfunc="size",
        fill_value=0,
    )

    # Table counting number of A-B pairs
    num_battles_ptbl = pd.pivot_table(
        battles, index="model_a", columns="model_b", aggfunc="size", fill_value=0
    )

    # Computing the proportion of wins for each model as A and as B
    # against all other models
    row_beats_col_freq = (a_win_ptbl + b_win_ptbl.T) / (
        num_battles_ptbl + num_battles_ptbl.T
    )

    if model_order is None:
        prop_wins = row_beats_col_freq.mean(axis=1).sort_values(ascending=False)
        model_order = list(prop_wins.keys())

    if limit_show_number is not None:
        model_order = model_order[:limit_show_number]

    # Arrange ordering according to proprition of wins
    row_beats_col = row_beats_col_freq.loc[model_order, model_order]
    return row_beats_col


def visualize_leaderboard_table(rating):
    models = list(rating.keys())
    models.sort(key=lambda k: -rating[k])

    emoji_dict = {
        1: "🥇",
        2: "🥈",
        3: "🥉",
    }

    md = ""
    md += "| Rank | Model | Elo Rating | Description |\n"
    md += "| --- | --- | --- | --- |\n"
    for i, model in enumerate(models):
        rank = i + 1
        minfo = get_model_info(model)
        emoji = emoji_dict.get(rank, "")
        md += f"| {rank} | {emoji} [{model}]({minfo.link}) | {rating[model]:.0f} | {minfo.description} |\n"

    return md


def visualize_pairwise_win_fraction(battles, model_order, scale=1):
    row_beats_col = compute_pairwise_win_fraction(battles, model_order)
    fig = px.imshow(
        row_beats_col,
        color_continuous_scale="RdBu",
        text_auto=".2f",
        height=700 * scale,
        width=700 * scale,
    )
    fig.update_layout(
        xaxis_title="Model B",
        yaxis_title="Model A",
        xaxis_side="top",
        title_y=0.07,
        title_x=0.5,
    )
    fig.update_traces(
        hovertemplate="Model A: %{y}<br>Model B: %{x}<br>Fraction of A Wins: %{z}<extra></extra>"
    )

    return fig


def visualize_battle_count(battles, model_order, scale=1):
    ptbl = pd.pivot_table(
        battles, index="model_a", columns="model_b", aggfunc="size", fill_value=0
    )
    battle_counts = ptbl + ptbl.T
    fig = px.imshow(
        battle_counts.loc[model_order, model_order],
        text_auto=True,
        height=700 * scale,
        width=700 * scale,
    )
    fig.update_layout(
        xaxis_title="Model B",
        yaxis_title="Model A",
        xaxis_side="top",
        title_y=0.07,
        title_x=0.5,
    )
    fig.update_traces(
        hovertemplate="Model A: %{y}<br>Model B: %{x}<br>Count: %{z}<extra></extra>"
    )
    return fig


def visualize_average_win_rate(battles, limit_show_number, scale=1):
    row_beats_col_freq = compute_pairwise_win_fraction(
        battles, None, limit_show_number=limit_show_number
    )
    fig = px.bar(
        row_beats_col_freq.mean(axis=1).sort_values(ascending=False),
        text_auto=".2f",
        height=500 * scale,
        width=700 * scale,
    )
    fig.update_layout(
        yaxis_title="Average Win Rate", xaxis_title="Model", showlegend=False
    )
    return fig


def visualize_bootstrap_elo_rating(df, df_final, limit_show_number, scale=1):
    bars = (
        pd.DataFrame(
            dict(
                lower=df.quantile(0.025),
                rating=df_final,
                upper=df.quantile(0.975),
            )
        )
        .reset_index(names="model")
        .sort_values("rating", ascending=False)
    )
    bars = bars[:limit_show_number]
    bars["error_y"] = bars["upper"] - bars["rating"]
    bars["error_y_minus"] = bars["rating"] - bars["lower"]
    bars["rating_rounded"] = np.round(bars["rating"])
    fig = px.scatter(
        bars,
        x="model",
        y="rating",
        error_y="error_y",
        error_y_minus="error_y_minus",
        text="rating_rounded",
        height=700,
        width=700 * scale,
    )
    fig.update_layout(xaxis_title="Model", yaxis_title="Rating")
    return fig


def limit_user_votes(battles, daily_vote_per_user):
    from datetime import datetime

    print("Before limiting user votes: ", len(battles))
    # add date
    battles["date"] = battles["tstamp"].apply(
        lambda x: datetime.fromtimestamp(x).strftime("%Y-%m-%d")
    )

    battles_new = pd.DataFrame()
    for date in battles["date"].unique():
        # only take the first daily_vote_per_user votes per judge per day
        df_today = battles[battles["date"] == date]
        df_sub = df_today.groupby("judge").head(daily_vote_per_user)

        # add df_sub to a new dataframe
        battles_new = pd.concat([battles_new, df_sub])
    print("After limiting user votes: ", len(battles_new))
    return battles_new


def get_model_pair_stats(battles):
    battles["ordered_pair"] = battles.apply(
        lambda x: tuple(sorted([x["model_a"], x["model_b"]])), axis=1
    )

    model_pair_stats = {}

    for index, row in battles.iterrows():
        pair = row["ordered_pair"]
        if pair not in model_pair_stats:
            model_pair_stats[pair] = {"win": 0, "loss": 0, "tie": 0}

        if row["winner"] in ["tie", "tie (bothbad)"]:
            model_pair_stats[pair]["tie"] += 1
        elif row["winner"] == "model_a" and row["model_a"] == min(pair):
            model_pair_stats[pair]["win"] += 1
        elif row["winner"] == "model_b" and row["model_b"] == min(pair):
            model_pair_stats[pair]["win"] += 1
        else:
            model_pair_stats[pair]["loss"] += 1

    return model_pair_stats


def outlier_detect(
    model_pair_stats,
    battles,
    max_vote=100,
    randomized=False,
    alpha=0.05,
    c_param=0.5,
    user_list=None,
):
    if user_list is None:
        # only check user who has >= 5 votes to save compute
        user_vote_cnt = battles["judge"].value_counts()
        user_list = user_vote_cnt[user_vote_cnt >= 5].index.tolist()
    print("#User to be checked: ", len(user_list))

    bad_user_list = []
    for user in user_list:
        flag = False
        p_upper = []
        p_lower = []
        df_2 = battles[battles["judge"] == user]
        for row in df_2.iterrows():
            if len(p_upper) >= max_vote:
                break

            model_pair = tuple(sorted([row[1]["model_a"], row[1]["model_b"]]))

            if row[1]["winner"] in ["tie", "tie (bothbad)"]:
                vote = 0.5
            elif row[1]["winner"] == "model_a" and row[1]["model_a"] == model_pair[0]:
                vote = 1
            elif row[1]["winner"] == "model_b" and row[1]["model_b"] == model_pair[0]:
                vote = 1
            else:
                vote = 0

            stats = model_pair_stats[model_pair]
            # count all votes
            # ratings = np.array(
            #     [1] * stats["win"] + [0.5] * stats["tie"] + [0] * stats["loss"]
            # )

            # only count win and loss
            ratings = np.array([1] * stats["win"] + [0] * stats["loss"])
            if randomized:
                noise = np.random.uniform(-1e-5, 1e-5, len(ratings))
                ratings += noise
                vote += np.random.uniform(-1e-5, 1e-5)

            p_upper += [(ratings <= vote).mean()]
            p_lower += [(ratings >= vote).mean()]

            M_upper = np.prod(1 / (2 * np.array(p_upper)))
            M_lower = np.prod(1 / (2 * np.array(p_lower)))

            # M_upper = np.prod((1 - c_param) / (c_param * np.array(p_upper) ** c_param))
            # M_lower = np.prod((1 - c_param) / (c_param * np.array(p_lower) ** c_param))
            if (M_upper > 1 / alpha) or (M_lower > 1 / alpha):
                print(f"Identify bad user with {len(p_upper)} votes")
                flag = True
                break
        if flag:
            bad_user_list.append({"user_id": user, "votes": len(p_upper)})
    print("Bad user length: ", len(bad_user_list))
    print(bad_user_list)

    bad_user_id_list = [x["user_id"] for x in bad_user_list]
    # remove bad users
    battles = battles[~battles["judge"].isin(bad_user_id_list)]
    return battles


def filter_long_conv(row):
    threshold = 768
    for conversation_type in ["conversation_a", "conversation_b"]:
        cur_conv = row[conversation_type]
        num_tokens_all = sum([turn["num_tokens"] for turn in cur_conv])
        if num_tokens_all >= threshold:
            return True
    return False


def report_elo_analysis_results(
    battles_json,
    rating_system="bt",
    num_bootstrap=100,
    exclude_models=[],
    langs=[],
    exclude_tie=False,
    exclude_unknown_lang=False,
    daily_vote_per_user=None,
    run_outlier_detect=False,
    scale=1,
    filter_func=lambda x: True,
):
    battles = pd.DataFrame(battles_json)

    tqdm.pandas(desc=f"Processing using {filter_func.__name__}")
    filtered_indices = battles.progress_apply(filter_func, axis=1)
    battles = battles[filtered_indices]

    battles = battles.sort_values(ascending=True, by=["tstamp"])

    if len(langs) > 0:
        battles = battles[battles["language"].isin(langs)]
    if exclude_unknown_lang:
        battles = battles[~battles["language"].str.contains("unknown")]

    # remove excluded models
    battles = battles[
        ~(
            battles["model_a"].isin(exclude_models)
            | battles["model_b"].isin(exclude_models)
        )
    ]

    # Only use anonymous votes
    battles = battles[battles["anony"]].reset_index(drop=True)
    battles_no_ties = battles[~battles["winner"].str.contains("tie")]
    if exclude_tie:
        battles = battles_no_ties

    if daily_vote_per_user is not None:
        battles = limit_user_votes(battles, daily_vote_per_user)

    if run_outlier_detect:
        model_pair_stats = get_model_pair_stats(battles)
        battles = outlier_detect(model_pair_stats, battles)

    print(f"Number of battles: {len(battles)}")
    # Online update
    elo_rating_online = compute_elo(battles)

    if rating_system == "bt":
        bootstrap_df = get_bootstrap_result(
            battles, compute_elo_mle_with_tie, num_round=num_bootstrap
        )
        elo_rating_final = compute_elo_mle_with_tie(battles)
    elif rating_system == "elo":
        bootstrap_df = get_bootstrap_result(
            battles, compute_elo, num_round=num_bootstrap
        )
        elo_rating_median = get_median_elo_from_bootstrap(bootstrap_df)
        elo_rating_final = elo_rating_median

    model_order = list(elo_rating_final.keys())

    model_rating_q025 = bootstrap_df.quantile(0.025)
    model_rating_q975 = bootstrap_df.quantile(0.975)

    # compute ranking based on CI
    ranking = {}
    for i, model_a in enumerate(model_order):
        ranking[model_a] = 1
        for j, model_b in enumerate(model_order):
            if i == j:
                continue
            if model_rating_q025[model_b] > model_rating_q975[model_a]:
                ranking[model_a] += 1

    # leaderboard_table_df: elo rating, variance, 95% interval, number of battles
    leaderboard_table_df = pd.DataFrame(
        {
            "rating": elo_rating_final,
            "variance": bootstrap_df.var(),
            "rating_q975": bootstrap_df.quantile(0.975),
            "rating_q025": bootstrap_df.quantile(0.025),
            "num_battles": battles["model_a"]
            .value_counts()
            .add(battles["model_b"].value_counts(), fill_value=0),
            "final_ranking": pd.Series(ranking),
        }
    )

    model_order.sort(key=lambda k: -elo_rating_final[k])
    limit_show_number = int(25 * scale)
    model_order = model_order[:limit_show_number]

    # Plots
    leaderboard_table = visualize_leaderboard_table(elo_rating_final)
    win_fraction_heatmap = visualize_pairwise_win_fraction(
        battles_no_ties, model_order, scale=scale
    )
    battle_count_heatmap = visualize_battle_count(
        battles_no_ties, model_order, scale=scale
    )
    average_win_rate_bar = visualize_average_win_rate(
        battles_no_ties, limit_show_number, scale=scale
    )
    bootstrap_elo_rating = visualize_bootstrap_elo_rating(
        bootstrap_df, elo_rating_final, limit_show_number, scale=scale
    )

    last_updated_tstamp = battles["tstamp"].max()
    last_updated_datetime = datetime.datetime.fromtimestamp(
        last_updated_tstamp, tz=timezone("US/Pacific")
    ).strftime("%Y-%m-%d %H:%M:%S %Z")

    return {
        "rating_system": rating_system,
        "elo_rating_online": elo_rating_online,
        "elo_rating_final": elo_rating_final,
        "leaderboard_table": leaderboard_table,
        "win_fraction_heatmap": win_fraction_heatmap,
        "battle_count_heatmap": battle_count_heatmap,
        "average_win_rate_bar": average_win_rate_bar,
        "bootstrap_elo_rating": bootstrap_elo_rating,
        "last_updated_datetime": last_updated_datetime,
        "last_updated_tstamp": last_updated_tstamp,
        "bootstrap_df": bootstrap_df,
        "leaderboard_table_df": leaderboard_table_df,
    }


def pretty_print_elo_rating(rating):
    model_order = list(rating.keys())
    model_order.sort(key=lambda k: -rating[k])
    for i, model in enumerate(model_order):
        print(f"{i+1:2d}, {model:25s}, {rating[model]:.0f}")


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--clean-battle-file", type=str)
    parser.add_argument("--max-num-files", type=int)
    parser.add_argument("--num-bootstrap", type=int, default=100)
    parser.add_argument(
        "--rating-system", type=str, choices=["bt", "elo"], default="bt"
    )
    parser.add_argument("--exclude-models", type=str, nargs="+", default=[])
    parser.add_argument("--exclude-tie", action="store_true", default=False)
    parser.add_argument("--exclude-unknown-lang", action="store_true", default=False)
    parser.add_argument("--exclude-url", action="store_true", default=False)
    parser.add_argument("--langs", type=str, nargs="+", default=[])
    parser.add_argument("--daily-vote-per-user", type=int, default=None)
    parser.add_argument("--run-outlier-detect", action="store_true", default=False)
    parser.add_argument("--category", nargs="+", default=["full"])
    parser.add_argument("--scale", type=float, default=1)
    args = parser.parse_args()

    np.random.seed(42)

    if args.clean_battle_file:
        # Read data from a cleaned battle files
        battles = pd.read_json(args.clean_battle_file)
    else:
        # Read data from all log files
        log_files = get_log_files(args.max_num_files)
        battles = clean_battle_data(log_files)

    filter_func_map = {
        "full": lambda x: True,
        "long": filter_long_conv,
        "chinese": lambda x: x["language"] == "Chinese",
        "english": lambda x: x["language"] == "English",
    }
    assert all(
        [cat in filter_func_map for cat in args.category]
    ), f"Invalid category: {args.category}"

    results = {}
    for cat in args.category:
        filter_func = filter_func_map[cat]
        results[cat] = report_elo_analysis_results(
            battles,
            rating_system=args.rating_system,
            num_bootstrap=args.num_bootstrap,
            exclude_models=args.exclude_models,
            langs=args.langs,
            exclude_tie=args.exclude_tie,
            exclude_unknown_lang=args.exclude_unknown_lang,
            daily_vote_per_user=args.daily_vote_per_user,
            run_outlier_detect=args.run_outlier_detect,
            scale=args.scale,
            filter_func=filter_func,
        )

    for cat in args.category:
        print(f"# Results for {cat} conversations")
        print("# Online Elo")
        pretty_print_elo_rating(results[cat]["elo_rating_online"])
        print("# Median")
        pretty_print_elo_rating(results[cat]["elo_rating_final"])
        print(f"last update : {results[cat]['last_updated_datetime']}")

        last_updated_tstamp = results[cat]["last_updated_tstamp"]
        cutoff_date = datetime.datetime.fromtimestamp(
            last_updated_tstamp, tz=timezone("US/Pacific")
        ).strftime("%Y%m%d")
        print(f"last update : {cutoff_date}")

    with open(f"elo_results_{cutoff_date}.pkl", "wb") as fout:
        pickle.dump(results, fout)