File size: 20,655 Bytes
6dc0c9c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 |
import argparse
import ast
from collections import defaultdict
import datetime
import json
import math
import pickle
from pytz import timezone
from functools import partial
import numpy as np
import pandas as pd
import plotly.express as px
from tqdm import tqdm
from transformers import AutoTokenizer
from fastchat.model.model_registry import get_model_info
from fastchat.serve.monitor.basic_stats import get_log_files
from fastchat.serve.monitor.clean_battle_data import clean_battle_data
pd.options.display.float_format = "{:.2f}".format
def compute_elo(battles, K=4, SCALE=400, BASE=10, INIT_RATING=1000):
rating = defaultdict(lambda: INIT_RATING)
for rd, model_a, model_b, winner in battles[
["model_a", "model_b", "winner"]
].itertuples():
ra = rating[model_a]
rb = rating[model_b]
ea = 1 / (1 + BASE ** ((rb - ra) / SCALE))
eb = 1 / (1 + BASE ** ((ra - rb) / SCALE))
if winner == "model_a":
sa = 1
elif winner == "model_b":
sa = 0
elif winner == "tie" or winner == "tie (bothbad)":
sa = 0.5
else:
raise Exception(f"unexpected vote {winner}")
rating[model_a] += K * (sa - ea)
rating[model_b] += K * (1 - sa - eb)
return dict(rating)
def get_bootstrap_result(battles, func_compute_elo, num_round=1000):
rows = []
for i in tqdm(range(num_round), desc="bootstrap"):
tmp_battles = battles.sample(frac=1.0, replace=True)
rows.append(func_compute_elo(tmp_battles))
df = pd.DataFrame(rows)
return df[df.median().sort_values(ascending=False).index]
def compute_elo_mle_with_tie(
df, SCALE=400, BASE=10, INIT_RATING=1000, sample_weight=None
):
from sklearn.linear_model import LogisticRegression
ptbl_a_win = pd.pivot_table(
df[df["winner"] == "model_a"],
index="model_a",
columns="model_b",
aggfunc="size",
fill_value=0,
)
ptbl_tie = pd.pivot_table(
df[df["winner"].isin(["tie", "tie (bothbad)"])],
index="model_a",
columns="model_b",
aggfunc="size",
fill_value=0,
)
ptbl_tie = ptbl_tie + ptbl_tie.T
ptbl_b_win = pd.pivot_table(
df[df["winner"] == "model_b"],
index="model_a",
columns="model_b",
aggfunc="size",
fill_value=0,
)
ptbl_win = ptbl_a_win * 2 + ptbl_b_win.T * 2 + ptbl_tie
models = pd.Series(np.arange(len(ptbl_win.index)), index=ptbl_win.index)
p = len(models)
X = np.zeros([p * (p - 1) * 2, p])
Y = np.zeros(p * (p - 1) * 2)
cur_row = 0
sample_weights = []
for m_a in ptbl_win.index:
for m_b in ptbl_win.columns:
if m_a == m_b:
continue
# if nan skip
if math.isnan(ptbl_win.loc[m_a, m_b]) or math.isnan(ptbl_win.loc[m_b, m_a]):
continue
X[cur_row, models[m_a]] = +math.log(BASE)
X[cur_row, models[m_b]] = -math.log(BASE)
Y[cur_row] = 1.0
sample_weights.append(ptbl_win.loc[m_a, m_b])
X[cur_row + 1, models[m_a]] = math.log(BASE)
X[cur_row + 1, models[m_b]] = -math.log(BASE)
Y[cur_row + 1] = 0.0
sample_weights.append(ptbl_win.loc[m_b, m_a])
cur_row += 2
X = X[:cur_row]
Y = Y[:cur_row]
lr = LogisticRegression(fit_intercept=False, penalty=None)
lr.fit(X, Y, sample_weight=sample_weights)
elo_scores = SCALE * lr.coef_[0] + INIT_RATING
if "mixtral-8x7b-instruct-v0.1" in models.index:
elo_scores += 1114 - elo_scores[models["mixtral-8x7b-instruct-v0.1"]]
return pd.Series(elo_scores, index=models.index).sort_values(ascending=False)
def get_median_elo_from_bootstrap(bootstrap_df):
median = dict(bootstrap_df.quantile(0.5))
median = {k: int(v + 0.5) for k, v in median.items()}
return median
def compute_pairwise_win_fraction(battles, model_order, limit_show_number=None):
# Times each model wins as Model A
a_win_ptbl = pd.pivot_table(
battles[battles["winner"] == "model_a"],
index="model_a",
columns="model_b",
aggfunc="size",
fill_value=0,
)
# Table counting times each model wins as Model B
b_win_ptbl = pd.pivot_table(
battles[battles["winner"] == "model_b"],
index="model_a",
columns="model_b",
aggfunc="size",
fill_value=0,
)
# Table counting number of A-B pairs
num_battles_ptbl = pd.pivot_table(
battles, index="model_a", columns="model_b", aggfunc="size", fill_value=0
)
# Computing the proportion of wins for each model as A and as B
# against all other models
row_beats_col_freq = (a_win_ptbl + b_win_ptbl.T) / (
num_battles_ptbl + num_battles_ptbl.T
)
if model_order is None:
prop_wins = row_beats_col_freq.mean(axis=1).sort_values(ascending=False)
model_order = list(prop_wins.keys())
if limit_show_number is not None:
model_order = model_order[:limit_show_number]
# Arrange ordering according to proprition of wins
row_beats_col = row_beats_col_freq.loc[model_order, model_order]
return row_beats_col
def visualize_leaderboard_table(rating):
models = list(rating.keys())
models.sort(key=lambda k: -rating[k])
emoji_dict = {
1: "🥇",
2: "🥈",
3: "🥉",
}
md = ""
md += "| Rank | Model | Elo Rating | Description |\n"
md += "| --- | --- | --- | --- |\n"
for i, model in enumerate(models):
rank = i + 1
minfo = get_model_info(model)
emoji = emoji_dict.get(rank, "")
md += f"| {rank} | {emoji} [{model}]({minfo.link}) | {rating[model]:.0f} | {minfo.description} |\n"
return md
def visualize_pairwise_win_fraction(battles, model_order, scale=1):
row_beats_col = compute_pairwise_win_fraction(battles, model_order)
fig = px.imshow(
row_beats_col,
color_continuous_scale="RdBu",
text_auto=".2f",
height=700 * scale,
width=700 * scale,
)
fig.update_layout(
xaxis_title="Model B",
yaxis_title="Model A",
xaxis_side="top",
title_y=0.07,
title_x=0.5,
)
fig.update_traces(
hovertemplate="Model A: %{y}<br>Model B: %{x}<br>Fraction of A Wins: %{z}<extra></extra>"
)
return fig
def visualize_battle_count(battles, model_order, scale=1):
ptbl = pd.pivot_table(
battles, index="model_a", columns="model_b", aggfunc="size", fill_value=0
)
battle_counts = ptbl + ptbl.T
fig = px.imshow(
battle_counts.loc[model_order, model_order],
text_auto=True,
height=700 * scale,
width=700 * scale,
)
fig.update_layout(
xaxis_title="Model B",
yaxis_title="Model A",
xaxis_side="top",
title_y=0.07,
title_x=0.5,
)
fig.update_traces(
hovertemplate="Model A: %{y}<br>Model B: %{x}<br>Count: %{z}<extra></extra>"
)
return fig
def visualize_average_win_rate(battles, limit_show_number, scale=1):
row_beats_col_freq = compute_pairwise_win_fraction(
battles, None, limit_show_number=limit_show_number
)
fig = px.bar(
row_beats_col_freq.mean(axis=1).sort_values(ascending=False),
text_auto=".2f",
height=500 * scale,
width=700 * scale,
)
fig.update_layout(
yaxis_title="Average Win Rate", xaxis_title="Model", showlegend=False
)
return fig
def visualize_bootstrap_elo_rating(df, df_final, limit_show_number, scale=1):
bars = (
pd.DataFrame(
dict(
lower=df.quantile(0.025),
rating=df_final,
upper=df.quantile(0.975),
)
)
.reset_index(names="model")
.sort_values("rating", ascending=False)
)
bars = bars[:limit_show_number]
bars["error_y"] = bars["upper"] - bars["rating"]
bars["error_y_minus"] = bars["rating"] - bars["lower"]
bars["rating_rounded"] = np.round(bars["rating"])
fig = px.scatter(
bars,
x="model",
y="rating",
error_y="error_y",
error_y_minus="error_y_minus",
text="rating_rounded",
height=700,
width=700 * scale,
)
fig.update_layout(xaxis_title="Model", yaxis_title="Rating")
return fig
def limit_user_votes(battles, daily_vote_per_user):
from datetime import datetime
print("Before limiting user votes: ", len(battles))
# add date
battles["date"] = battles["tstamp"].apply(
lambda x: datetime.fromtimestamp(x).strftime("%Y-%m-%d")
)
battles_new = pd.DataFrame()
for date in battles["date"].unique():
# only take the first daily_vote_per_user votes per judge per day
df_today = battles[battles["date"] == date]
df_sub = df_today.groupby("judge").head(daily_vote_per_user)
# add df_sub to a new dataframe
battles_new = pd.concat([battles_new, df_sub])
print("After limiting user votes: ", len(battles_new))
return battles_new
def get_model_pair_stats(battles):
battles["ordered_pair"] = battles.apply(
lambda x: tuple(sorted([x["model_a"], x["model_b"]])), axis=1
)
model_pair_stats = {}
for index, row in battles.iterrows():
pair = row["ordered_pair"]
if pair not in model_pair_stats:
model_pair_stats[pair] = {"win": 0, "loss": 0, "tie": 0}
if row["winner"] in ["tie", "tie (bothbad)"]:
model_pair_stats[pair]["tie"] += 1
elif row["winner"] == "model_a" and row["model_a"] == min(pair):
model_pair_stats[pair]["win"] += 1
elif row["winner"] == "model_b" and row["model_b"] == min(pair):
model_pair_stats[pair]["win"] += 1
else:
model_pair_stats[pair]["loss"] += 1
return model_pair_stats
def outlier_detect(
model_pair_stats,
battles,
max_vote=100,
randomized=False,
alpha=0.05,
c_param=0.5,
user_list=None,
):
if user_list is None:
# only check user who has >= 5 votes to save compute
user_vote_cnt = battles["judge"].value_counts()
user_list = user_vote_cnt[user_vote_cnt >= 5].index.tolist()
print("#User to be checked: ", len(user_list))
bad_user_list = []
for user in user_list:
flag = False
p_upper = []
p_lower = []
df_2 = battles[battles["judge"] == user]
for row in df_2.iterrows():
if len(p_upper) >= max_vote:
break
model_pair = tuple(sorted([row[1]["model_a"], row[1]["model_b"]]))
if row[1]["winner"] in ["tie", "tie (bothbad)"]:
vote = 0.5
elif row[1]["winner"] == "model_a" and row[1]["model_a"] == model_pair[0]:
vote = 1
elif row[1]["winner"] == "model_b" and row[1]["model_b"] == model_pair[0]:
vote = 1
else:
vote = 0
stats = model_pair_stats[model_pair]
# count all votes
# ratings = np.array(
# [1] * stats["win"] + [0.5] * stats["tie"] + [0] * stats["loss"]
# )
# only count win and loss
ratings = np.array([1] * stats["win"] + [0] * stats["loss"])
if randomized:
noise = np.random.uniform(-1e-5, 1e-5, len(ratings))
ratings += noise
vote += np.random.uniform(-1e-5, 1e-5)
p_upper += [(ratings <= vote).mean()]
p_lower += [(ratings >= vote).mean()]
M_upper = np.prod(1 / (2 * np.array(p_upper)))
M_lower = np.prod(1 / (2 * np.array(p_lower)))
# M_upper = np.prod((1 - c_param) / (c_param * np.array(p_upper) ** c_param))
# M_lower = np.prod((1 - c_param) / (c_param * np.array(p_lower) ** c_param))
if (M_upper > 1 / alpha) or (M_lower > 1 / alpha):
print(f"Identify bad user with {len(p_upper)} votes")
flag = True
break
if flag:
bad_user_list.append({"user_id": user, "votes": len(p_upper)})
print("Bad user length: ", len(bad_user_list))
print(bad_user_list)
bad_user_id_list = [x["user_id"] for x in bad_user_list]
# remove bad users
battles = battles[~battles["judge"].isin(bad_user_id_list)]
return battles
def filter_long_conv(row):
threshold = 768
for conversation_type in ["conversation_a", "conversation_b"]:
cur_conv = row[conversation_type]
num_tokens_all = sum([turn["num_tokens"] for turn in cur_conv])
if num_tokens_all >= threshold:
return True
return False
def report_elo_analysis_results(
battles_json,
rating_system="bt",
num_bootstrap=100,
exclude_models=[],
langs=[],
exclude_tie=False,
exclude_unknown_lang=False,
daily_vote_per_user=None,
run_outlier_detect=False,
scale=1,
filter_func=lambda x: True,
):
battles = pd.DataFrame(battles_json)
tqdm.pandas(desc=f"Processing using {filter_func.__name__}")
filtered_indices = battles.progress_apply(filter_func, axis=1)
battles = battles[filtered_indices]
battles = battles.sort_values(ascending=True, by=["tstamp"])
if len(langs) > 0:
battles = battles[battles["language"].isin(langs)]
if exclude_unknown_lang:
battles = battles[~battles["language"].str.contains("unknown")]
# remove excluded models
battles = battles[
~(
battles["model_a"].isin(exclude_models)
| battles["model_b"].isin(exclude_models)
)
]
# Only use anonymous votes
battles = battles[battles["anony"]].reset_index(drop=True)
battles_no_ties = battles[~battles["winner"].str.contains("tie")]
if exclude_tie:
battles = battles_no_ties
if daily_vote_per_user is not None:
battles = limit_user_votes(battles, daily_vote_per_user)
if run_outlier_detect:
model_pair_stats = get_model_pair_stats(battles)
battles = outlier_detect(model_pair_stats, battles)
print(f"Number of battles: {len(battles)}")
# Online update
elo_rating_online = compute_elo(battles)
if rating_system == "bt":
bootstrap_df = get_bootstrap_result(
battles, compute_elo_mle_with_tie, num_round=num_bootstrap
)
elo_rating_final = compute_elo_mle_with_tie(battles)
elif rating_system == "elo":
bootstrap_df = get_bootstrap_result(
battles, compute_elo, num_round=num_bootstrap
)
elo_rating_median = get_median_elo_from_bootstrap(bootstrap_df)
elo_rating_final = elo_rating_median
model_order = list(elo_rating_final.keys())
model_rating_q025 = bootstrap_df.quantile(0.025)
model_rating_q975 = bootstrap_df.quantile(0.975)
# compute ranking based on CI
ranking = {}
for i, model_a in enumerate(model_order):
ranking[model_a] = 1
for j, model_b in enumerate(model_order):
if i == j:
continue
if model_rating_q025[model_b] > model_rating_q975[model_a]:
ranking[model_a] += 1
# leaderboard_table_df: elo rating, variance, 95% interval, number of battles
leaderboard_table_df = pd.DataFrame(
{
"rating": elo_rating_final,
"variance": bootstrap_df.var(),
"rating_q975": bootstrap_df.quantile(0.975),
"rating_q025": bootstrap_df.quantile(0.025),
"num_battles": battles["model_a"]
.value_counts()
.add(battles["model_b"].value_counts(), fill_value=0),
"final_ranking": pd.Series(ranking),
}
)
model_order.sort(key=lambda k: -elo_rating_final[k])
limit_show_number = int(25 * scale)
model_order = model_order[:limit_show_number]
# Plots
leaderboard_table = visualize_leaderboard_table(elo_rating_final)
win_fraction_heatmap = visualize_pairwise_win_fraction(
battles_no_ties, model_order, scale=scale
)
battle_count_heatmap = visualize_battle_count(
battles_no_ties, model_order, scale=scale
)
average_win_rate_bar = visualize_average_win_rate(
battles_no_ties, limit_show_number, scale=scale
)
bootstrap_elo_rating = visualize_bootstrap_elo_rating(
bootstrap_df, elo_rating_final, limit_show_number, scale=scale
)
last_updated_tstamp = battles["tstamp"].max()
last_updated_datetime = datetime.datetime.fromtimestamp(
last_updated_tstamp, tz=timezone("US/Pacific")
).strftime("%Y-%m-%d %H:%M:%S %Z")
return {
"rating_system": rating_system,
"elo_rating_online": elo_rating_online,
"elo_rating_final": elo_rating_final,
"leaderboard_table": leaderboard_table,
"win_fraction_heatmap": win_fraction_heatmap,
"battle_count_heatmap": battle_count_heatmap,
"average_win_rate_bar": average_win_rate_bar,
"bootstrap_elo_rating": bootstrap_elo_rating,
"last_updated_datetime": last_updated_datetime,
"last_updated_tstamp": last_updated_tstamp,
"bootstrap_df": bootstrap_df,
"leaderboard_table_df": leaderboard_table_df,
}
def pretty_print_elo_rating(rating):
model_order = list(rating.keys())
model_order.sort(key=lambda k: -rating[k])
for i, model in enumerate(model_order):
print(f"{i+1:2d}, {model:25s}, {rating[model]:.0f}")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--clean-battle-file", type=str)
parser.add_argument("--max-num-files", type=int)
parser.add_argument("--num-bootstrap", type=int, default=100)
parser.add_argument(
"--rating-system", type=str, choices=["bt", "elo"], default="bt"
)
parser.add_argument("--exclude-models", type=str, nargs="+", default=[])
parser.add_argument("--exclude-tie", action="store_true", default=False)
parser.add_argument("--exclude-unknown-lang", action="store_true", default=False)
parser.add_argument("--exclude-url", action="store_true", default=False)
parser.add_argument("--langs", type=str, nargs="+", default=[])
parser.add_argument("--daily-vote-per-user", type=int, default=None)
parser.add_argument("--run-outlier-detect", action="store_true", default=False)
parser.add_argument("--category", nargs="+", default=["full"])
parser.add_argument("--scale", type=float, default=1)
args = parser.parse_args()
np.random.seed(42)
if args.clean_battle_file:
# Read data from a cleaned battle files
battles = pd.read_json(args.clean_battle_file)
else:
# Read data from all log files
log_files = get_log_files(args.max_num_files)
battles = clean_battle_data(log_files)
filter_func_map = {
"full": lambda x: True,
"long": filter_long_conv,
"chinese": lambda x: x["language"] == "Chinese",
"english": lambda x: x["language"] == "English",
}
assert all(
[cat in filter_func_map for cat in args.category]
), f"Invalid category: {args.category}"
results = {}
for cat in args.category:
filter_func = filter_func_map[cat]
results[cat] = report_elo_analysis_results(
battles,
rating_system=args.rating_system,
num_bootstrap=args.num_bootstrap,
exclude_models=args.exclude_models,
langs=args.langs,
exclude_tie=args.exclude_tie,
exclude_unknown_lang=args.exclude_unknown_lang,
daily_vote_per_user=args.daily_vote_per_user,
run_outlier_detect=args.run_outlier_detect,
scale=args.scale,
filter_func=filter_func,
)
for cat in args.category:
print(f"# Results for {cat} conversations")
print("# Online Elo")
pretty_print_elo_rating(results[cat]["elo_rating_online"])
print("# Median")
pretty_print_elo_rating(results[cat]["elo_rating_final"])
print(f"last update : {results[cat]['last_updated_datetime']}")
last_updated_tstamp = results[cat]["last_updated_tstamp"]
cutoff_date = datetime.datetime.fromtimestamp(
last_updated_tstamp, tz=timezone("US/Pacific")
).strftime("%Y%m%d")
print(f"last update : {cutoff_date}")
with open(f"elo_results_{cutoff_date}.pkl", "wb") as fout:
pickle.dump(results, fout)
|