File size: 35,041 Bytes
6dc0c9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
"""
Live monitor of the website statistics and leaderboard.

Dependency:
sudo apt install pkg-config libicu-dev
pip install pytz gradio gdown plotly polyglot pyicu pycld2 tabulate
"""

import argparse
import ast
import json
import pickle
import os
import threading
import time

import pandas as pd
import gradio as gr
import numpy as np

from fastchat.serve.monitor.basic_stats import report_basic_stats, get_log_files
from fastchat.serve.monitor.clean_battle_data import clean_battle_data
from fastchat.serve.monitor.elo_analysis import report_elo_analysis_results
from fastchat.utils import build_logger, get_window_url_params_js


notebook_url = (
    "https://colab.research.google.com/drive/1KdwokPjirkTmpO_P1WByFNFiqxWQquwH"
)

basic_component_values = [None] * 6
leader_component_values = [None] * 5


def make_default_md_1(arena_df, elo_results, mirror=False):
    link_color = "#1976D2"  # This color should be clear in both light and dark mode
    leaderboard_md = f"""
    # 🏆 LMSYS Chatbot Arena Leaderboard 
    <a href='https://lmsys.org/blog/2023-05-03-arena/' style='color: {link_color}; text-decoration: none;'>Blog</a> |
    <a href='https://arxiv.org/abs/2403.04132' style='color: {link_color}; text-decoration: none;'>Paper</a> |
    <a href='https://github.com/lm-sys/FastChat' style='color: {link_color}; text-decoration: none;'>GitHub</a> |
    <a href='https://github.com/lm-sys/FastChat/blob/main/docs/dataset_release.md' style='color: {link_color}; text-decoration: none;'>Dataset</a> |
    <a href='https://twitter.com/lmsysorg' style='color: {link_color}; text-decoration: none;'>Twitter</a> |
    <a href='https://discord.gg/HSWAKCrnFx' style='color: {link_color}; text-decoration: none;'>Discord</a>
    """

    return leaderboard_md


def make_default_md_2(arena_df, elo_results, mirror=False):
    mirror_str = "<span style='color: red; font-weight: bold'>This is a mirror of the live leaderboard created and maintained by the <a href='https://lmsys.org' style='color: red; text-decoration: none;'>LMSYS Organization</a>. Please link to <a href='https://leaderboard.lmsys.org' style='color: #B00020; text-decoration: none;'>leaderboard.lmsys.org</a> for citation purposes.</span>"
    leaderboard_md = f"""
    {mirror_str if mirror else ""}
    
    LMSYS Chatbot Arena is a crowdsourced open platform for LLM evals. We've collected over 800,000 human pairwise comparisons to rank LLMs with the Bradley-Terry model and display the model ratings in Elo-scale.
    You can find more details in our paper. **Chatbot arena is dependent on community participation, please contribute by casting your vote!**
    """

    return leaderboard_md


def make_arena_leaderboard_md(arena_df, last_updated_time):
    total_votes = sum(arena_df["num_battles"]) // 2
    total_models = len(arena_df)
    space = "&nbsp;&nbsp;&nbsp;"

    leaderboard_md = f"""
Total #models: **{total_models}**.{space} Total #votes: **{"{:,}".format(total_votes)}**.{space} Last updated: {last_updated_time}.

📣 **NEW!** View leaderboard for different categories (e.g., coding, long user query)! This is still in preview and subject to change.

Code to recreate leaderboard tables and plots in this [notebook]({notebook_url}). You can contribute your vote at [chat.lmsys.org](https://chat.lmsys.org)!

***Rank (UB)**: model's ranking (upper-bound), defined by one + the number of models that are statistically better than the target model.
Model A is statistically better than model B when A's lower-bound score is greater than B's upper-bound score (in 95% confidence interval).
See Figure 1 below for visualization of the confidence intervals of model scores.
"""
    return leaderboard_md


def make_category_arena_leaderboard_md(arena_df, arena_subset_df, name="Overall"):
    total_votes = sum(arena_df["num_battles"]) // 2
    total_models = len(arena_df)
    space = "&nbsp;&nbsp;&nbsp;"
    total_subset_votes = sum(arena_subset_df["num_battles"]) // 2
    total_subset_models = len(arena_subset_df)
    leaderboard_md = f"""### {cat_name_to_explanation[name]}
#### {space} #models: **{total_subset_models} ({round(total_subset_models/total_models *100)}%)** {space} #votes: **{"{:,}".format(total_subset_votes)} ({round(total_subset_votes/total_votes * 100)}%)**{space}
"""
    return leaderboard_md


def make_full_leaderboard_md(elo_results):
    leaderboard_md = """
Three benchmarks are displayed: **Arena Elo**, **MT-Bench** and **MMLU**.
- [Chatbot Arena](https://chat.lmsys.org/?arena) - a crowdsourced, randomized battle platform. We use 500K+ user votes to compute model strength.
- [MT-Bench](https://arxiv.org/abs/2306.05685): a set of challenging multi-turn questions. We use GPT-4 to grade the model responses.
- [MMLU](https://arxiv.org/abs/2009.03300) (5-shot): a test to measure a model's multitask accuracy on 57 tasks.

💻 Code: The MT-bench scores (single-answer grading on a scale of 10) are computed by [fastchat.llm_judge](https://github.com/lm-sys/FastChat/tree/main/fastchat/llm_judge).
The MMLU scores are mostly computed by [InstructEval](https://github.com/declare-lab/instruct-eval).
Higher values are better for all benchmarks. Empty cells mean not available.
"""
    return leaderboard_md


def make_leaderboard_md_live(elo_results):
    leaderboard_md = f"""
# Leaderboard
Last updated: {elo_results["last_updated_datetime"]}
{elo_results["leaderboard_table"]}
"""
    return leaderboard_md


def update_elo_components(
    max_num_files, elo_results_file, ban_ip_file, exclude_model_names
):
    log_files = get_log_files(max_num_files)

    # Leaderboard
    if elo_results_file is None:  # Do live update
        ban_ip_list = json.load(open(ban_ip_file)) if ban_ip_file else None
        battles = clean_battle_data(
            log_files, exclude_model_names, ban_ip_list=ban_ip_list
        )
        elo_results = report_elo_analysis_results(battles, scale=2)

        leader_component_values[0] = make_leaderboard_md_live(elo_results)
        leader_component_values[1] = elo_results["win_fraction_heatmap"]
        leader_component_values[2] = elo_results["battle_count_heatmap"]
        leader_component_values[3] = elo_results["bootstrap_elo_rating"]
        leader_component_values[4] = elo_results["average_win_rate_bar"]

    # Basic stats
    basic_stats = report_basic_stats(log_files)
    md0 = f"Last updated: {basic_stats['last_updated_datetime']}"

    md1 = "### Action Histogram\n"
    md1 += basic_stats["action_hist_md"] + "\n"

    md2 = "### Anony. Vote Histogram\n"
    md2 += basic_stats["anony_vote_hist_md"] + "\n"

    md3 = "### Model Call Histogram\n"
    md3 += basic_stats["model_hist_md"] + "\n"

    md4 = "### Model Call (Last 24 Hours)\n"
    md4 += basic_stats["num_chats_last_24_hours"] + "\n"

    basic_component_values[0] = md0
    basic_component_values[1] = basic_stats["chat_dates_bar"]
    basic_component_values[2] = md1
    basic_component_values[3] = md2
    basic_component_values[4] = md3
    basic_component_values[5] = md4


def update_worker(
    max_num_files, interval, elo_results_file, ban_ip_file, exclude_model_names
):
    while True:
        tic = time.time()
        update_elo_components(
            max_num_files, elo_results_file, ban_ip_file, exclude_model_names
        )
        durtaion = time.time() - tic
        print(f"update duration: {durtaion:.2f} s")
        time.sleep(max(interval - durtaion, 0))


def load_demo(url_params, request: gr.Request):
    logger.info(f"load_demo. ip: {request.client.host}. params: {url_params}")
    return basic_component_values + leader_component_values


def model_hyperlink(model_name, link):
    return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'


def load_leaderboard_table_csv(filename, add_hyperlink=True):
    lines = open(filename).readlines()
    heads = [v.strip() for v in lines[0].split(",")]
    rows = []
    for i in range(1, len(lines)):
        row = [v.strip() for v in lines[i].split(",")]
        for j in range(len(heads)):
            item = {}
            for h, v in zip(heads, row):
                if h == "Arena Elo rating":
                    if v != "-":
                        v = int(ast.literal_eval(v))
                    else:
                        v = np.nan
                elif h == "MMLU":
                    if v != "-":
                        v = round(ast.literal_eval(v) * 100, 1)
                    else:
                        v = np.nan
                elif h == "MT-bench (win rate %)":
                    if v != "-":
                        v = round(ast.literal_eval(v[:-1]), 1)
                    else:
                        v = np.nan
                elif h == "MT-bench (score)":
                    if v != "-":
                        v = round(ast.literal_eval(v), 2)
                    else:
                        v = np.nan
                item[h] = v
            if add_hyperlink:
                item["Model"] = model_hyperlink(item["Model"], item["Link"])
        rows.append(item)

    return rows


def build_basic_stats_tab():
    empty = "Loading ..."
    basic_component_values[:] = [empty, None, empty, empty, empty, empty]

    md0 = gr.Markdown(empty)
    gr.Markdown("#### Figure 1: Number of model calls and votes")
    plot_1 = gr.Plot(show_label=False)
    with gr.Row():
        with gr.Column():
            md1 = gr.Markdown(empty)
        with gr.Column():
            md2 = gr.Markdown(empty)
    with gr.Row():
        with gr.Column():
            md3 = gr.Markdown(empty)
        with gr.Column():
            md4 = gr.Markdown(empty)
    return [md0, plot_1, md1, md2, md3, md4]


def get_full_table(arena_df, model_table_df):
    values = []
    for i in range(len(model_table_df)):
        row = []
        model_key = model_table_df.iloc[i]["key"]
        model_name = model_table_df.iloc[i]["Model"]
        # model display name
        row.append(model_name)
        if model_key in arena_df.index:
            idx = arena_df.index.get_loc(model_key)
            row.append(round(arena_df.iloc[idx]["rating"]))
        else:
            row.append(np.nan)
        row.append(model_table_df.iloc[i]["MT-bench (score)"])
        row.append(model_table_df.iloc[i]["MMLU"])
        # Organization
        row.append(model_table_df.iloc[i]["Organization"])
        # license
        row.append(model_table_df.iloc[i]["License"])

        values.append(row)
    values.sort(key=lambda x: -x[1] if not np.isnan(x[1]) else 1e9)
    return values


def create_ranking_str(ranking, ranking_difference):
    if ranking_difference > 0:
        return f"{int(ranking)} \u2191"
    elif ranking_difference < 0:
        return f"{int(ranking)} \u2193"
    else:
        return f"{int(ranking)}"


def recompute_final_ranking(arena_df):
    # compute ranking based on CI
    ranking = {}
    for i, model_a in enumerate(arena_df.index):
        ranking[model_a] = 1
        for j, model_b in enumerate(arena_df.index):
            if i == j:
                continue
            if (
                arena_df.loc[model_b]["rating_q025"]
                > arena_df.loc[model_a]["rating_q975"]
            ):
                ranking[model_a] += 1
    return list(ranking.values())


def highlight_top_models(df):
    def highlight_max_rank(s):
        # Pastel Yellow with transparency, rgba(red, green, blue, alpha)
        highlight_color = "rgba(255, 255, 128, 0.2)"  # 50% transparent
        if int(s["Rank* (UB)"].replace("↑", "").replace("↓", "")) == 1:
            return [f"background-color: {highlight_color}" for _ in s]
        else:
            return ["" for _ in s]

    # Apply and return the styled DataFrame
    return df.apply(highlight_max_rank, axis=1)


def get_arena_table(arena_df, model_table_df, arena_subset_df=None):
    arena_df = arena_df.sort_values(
        by=["final_ranking", "rating"], ascending=[True, False]
    )
    arena_df["final_ranking"] = recompute_final_ranking(arena_df)
    arena_df = arena_df.sort_values(
        by=["final_ranking", "rating"], ascending=[True, False]
    )

    # sort by rating
    if arena_subset_df is not None:
        # filter out models not in the arena_df
        arena_subset_df = arena_subset_df[arena_subset_df.index.isin(arena_df.index)]
        arena_subset_df = arena_subset_df.sort_values(by=["rating"], ascending=False)
        arena_subset_df["final_ranking"] = recompute_final_ranking(arena_subset_df)
        # keep only the models in the subset in arena_df and recompute final_ranking
        arena_df = arena_df[arena_df.index.isin(arena_subset_df.index)]
        # recompute final ranking
        arena_df["final_ranking"] = recompute_final_ranking(arena_df)

        # assign ranking by the order
        arena_subset_df["final_ranking_no_tie"] = range(1, len(arena_subset_df) + 1)
        arena_df["final_ranking_no_tie"] = range(1, len(arena_df) + 1)
        # join arena_df and arena_subset_df on index
        arena_df = arena_subset_df.join(
            arena_df["final_ranking"], rsuffix="_global", how="inner"
        )
        arena_df["ranking_difference"] = (
            arena_df["final_ranking_global"] - arena_df["final_ranking"]
        )

        arena_df = arena_df.sort_values(
            by=["final_ranking", "rating"], ascending=[True, False]
        )
        arena_df["final_ranking"] = arena_df.apply(
            lambda x: create_ranking_str(x["final_ranking"], x["ranking_difference"]),
            axis=1,
        )

    arena_df["final_ranking"] = arena_df["final_ranking"].astype(str)

    values = []
    for i in range(len(arena_df)):
        row = []
        model_key = arena_df.index[i]
        try:  # this is a janky fix for where the model key is not in the model table (model table and arena table dont contain all the same models)
            model_name = model_table_df[model_table_df["key"] == model_key][
                "Model"
            ].values[0]
            # rank
            ranking = arena_df.iloc[i].get("final_ranking") or i + 1
            row.append(ranking)
            if arena_subset_df is not None:
                row.append(arena_df.iloc[i].get("ranking_difference") or 0)
            # model display name
            row.append(model_name)
            # elo rating
            row.append(round(arena_df.iloc[i]["rating"]))
            upper_diff = round(
                arena_df.iloc[i]["rating_q975"] - arena_df.iloc[i]["rating"]
            )
            lower_diff = round(
                arena_df.iloc[i]["rating"] - arena_df.iloc[i]["rating_q025"]
            )
            row.append(f"+{upper_diff}/-{lower_diff}")
            # num battles
            row.append(round(arena_df.iloc[i]["num_battles"]))
            # Organization
            row.append(
                model_table_df[model_table_df["key"] == model_key][
                    "Organization"
                ].values[0]
            )
            # license
            row.append(
                model_table_df[model_table_df["key"] == model_key]["License"].values[0]
            )
            cutoff_date = model_table_df[model_table_df["key"] == model_key][
                "Knowledge cutoff date"
            ].values[0]
            if cutoff_date == "-":
                row.append("Unknown")
            else:
                row.append(cutoff_date)
            values.append(row)
        except Exception as e:
            print(f"{model_key} - {e}")
    return values


key_to_category_name = {
    "full": "Overall",
    "dedup": "De-duplicate Top Redundant Queries (soon to be default)",
    "coding": "Coding",
    "hard_6": "Hard Prompts (Overall)",
    "hard_english_6": "Hard Prompts (English)",
    "long_user": "Longer Query",
    "english": "English",
    "chinese": "Chinese",
    "french": "French",
    "german": "German",
    "spanish": "Spanish",
    "russian": "Russian",
    "japanese": "Japanese",
    "no_tie": "Exclude Ties",
    "no_short": "Exclude Short Query (< 5 tokens)",
    "no_refusal": "Exclude Refusal",
    "overall_limit_5_user_vote": "overall_limit_5_user_vote",
    "full_old": "Overall (Deprecated)",
}
cat_name_to_explanation = {
    "Overall": "Overall Questions",
    "De-duplicate Top Redundant Queries (soon to be default)": "De-duplicate top redundant queries (top 0.1%). See details in [blog post](https://lmsys.org/blog/2024-05-17-category-hard/#note-enhancing-quality-through-de-duplication).",
    "Coding": "Coding: whether conversation contains code snippets",
    "Hard Prompts (Overall)": "Hard Prompts (Overall): details in [blog post](https://lmsys.org/blog/2024-05-17-category-hard/)",
    "Hard Prompts (English)": "Hard Prompts (English), note: the delta is to English Category. details in [blog post](https://lmsys.org/blog/2024-05-17-category-hard/)",
    "Longer Query": "Longer Query (>= 500 tokens)",
    "English": "English Prompts",
    "Chinese": "Chinese Prompts",
    "French": "French Prompts",
    "German": "German Prompts",
    "Spanish": "Spanish Prompts",
    "Russian": "Russian Prompts",
    "Japanese": "Japanese Prompts",
    "Exclude Ties": "Exclude Ties and Bothbad",
    "Exclude Short Query (< 5 tokens)": "Exclude Short User Query (< 5 tokens)",
    "Exclude Refusal": 'Exclude model responses with refusal (e.g., "I cannot answer")',
    "overall_limit_5_user_vote": "overall_limit_5_user_vote",
    "Overall (Deprecated)": "Overall without De-duplicating Top Redundant Queries (top 0.1%). See details in [blog post](https://lmsys.org/blog/2024-05-17-category-hard/#note-enhancing-quality-through-de-duplication).",
}
cat_name_to_baseline = {
    "Hard Prompts (English)": "English",
}


def build_leaderboard_tab(
    elo_results_file, leaderboard_table_file, show_plot=False, mirror=False
):
    arena_dfs = {}
    category_elo_results = {}
    if elo_results_file is None:  # Do live update
        default_md = "Loading ..."
        p1 = p2 = p3 = p4 = None
    else:
        with open(elo_results_file, "rb") as fin:
            elo_results = pickle.load(fin)
            last_updated_time = None
            if "full" in elo_results:
                last_updated_time = elo_results["full"]["last_updated_datetime"].split(
                    " "
                )[0]
                for k in key_to_category_name.keys():
                    if k not in elo_results:
                        continue
                    arena_dfs[key_to_category_name[k]] = elo_results[k][
                        "leaderboard_table_df"
                    ]
                    category_elo_results[key_to_category_name[k]] = elo_results[k]

        p1 = category_elo_results["Overall"]["win_fraction_heatmap"]
        p2 = category_elo_results["Overall"]["battle_count_heatmap"]
        p3 = category_elo_results["Overall"]["bootstrap_elo_rating"]
        p4 = category_elo_results["Overall"]["average_win_rate_bar"]
        arena_df = arena_dfs["Overall"]
        default_md = make_default_md_1(
            arena_df, category_elo_results["Overall"], mirror=mirror
        )
        default_md_2 = make_default_md_2(
            arena_df, category_elo_results["Overall"], mirror=mirror
        )

    with gr.Row():
        with gr.Column(scale=4):
            md_1 = gr.Markdown(default_md, elem_id="leaderboard_markdown")
        with gr.Column(scale=1):
            vote_button = gr.Button("Vote!", link="https://chat.lmsys.org")
    md2 = gr.Markdown(default_md_2, elem_id="leaderboard_markdown")
    if leaderboard_table_file:
        data = load_leaderboard_table_csv(leaderboard_table_file)
        model_table_df = pd.DataFrame(data)

        with gr.Tabs() as tabs:
            # arena table
            arena_table_vals = get_arena_table(arena_df, model_table_df)
            with gr.Tab("Arena", id=0):
                md = make_arena_leaderboard_md(arena_df, last_updated_time)
                gr.Markdown(md, elem_id="leaderboard_markdown")
                with gr.Row():
                    with gr.Column(scale=2):
                        category_dropdown = gr.Dropdown(
                            choices=list(arena_dfs.keys()),
                            label="Category",
                            value="Overall",
                        )
                    default_category_details = make_category_arena_leaderboard_md(
                        arena_df, arena_df, name="Overall"
                    )
                    with gr.Column(scale=4, variant="panel"):
                        category_deets = gr.Markdown(
                            default_category_details, elem_id="category_deets"
                        )

                arena_vals = pd.DataFrame(
                    arena_table_vals,
                    columns=[
                        "Rank* (UB)",
                        "Model",
                        "Arena Elo",
                        "95% CI",
                        "Votes",
                        "Organization",
                        "License",
                        "Knowledge Cutoff",
                    ],
                )
                elo_display_df = gr.Dataframe(
                    headers=[
                        "Rank* (UB)",
                        "Model",
                        "Arena Elo",
                        "95% CI",
                        "Votes",
                        "Organization",
                        "License",
                        "Knowledge Cutoff",
                    ],
                    datatype=[
                        "str",
                        "markdown",
                        "number",
                        "str",
                        "number",
                        "str",
                        "str",
                        "str",
                    ],
                    # value=highlight_top_models(arena_vals.style),
                    value=arena_vals.style,
                    elem_id="arena_leaderboard_dataframe",
                    height=700,
                    column_widths=[70, 190, 100, 100, 90, 130, 150, 100],
                    wrap=True,
                )

                gr.Markdown(
                    f"""Note: in each category, we exclude models with fewer than 300 votes as their confidence intervals can be large.""",
                    elem_id="leaderboard_markdown",
                )

                leader_component_values[:] = [default_md, p1, p2, p3, p4]

                if show_plot:
                    more_stats_md = gr.Markdown(
                        f"""## More Statistics for Chatbot Arena (Overall)""",
                        elem_id="leaderboard_header_markdown",
                    )
                    with gr.Row():
                        with gr.Column():
                            gr.Markdown(
                                "#### Figure 1: Confidence Intervals on Model Strength (via Bootstrapping)",
                                elem_id="plot-title",
                            )
                            plot_3 = gr.Plot(p3, show_label=False)
                        with gr.Column():
                            gr.Markdown(
                                "#### Figure 2: Average Win Rate Against All Other Models (Assuming Uniform Sampling and No Ties)",
                                elem_id="plot-title",
                            )
                            plot_4 = gr.Plot(p4, show_label=False)
                    with gr.Row():
                        with gr.Column():
                            gr.Markdown(
                                "#### Figure 3: Fraction of Model A Wins for All Non-tied A vs. B Battles",
                                elem_id="plot-title",
                            )
                            plot_1 = gr.Plot(
                                p1, show_label=False, elem_id="plot-container"
                            )
                        with gr.Column():
                            gr.Markdown(
                                "#### Figure 4: Battle Count for Each Combination of Models (without Ties)",
                                elem_id="plot-title",
                            )
                            plot_2 = gr.Plot(p2, show_label=False)
            with gr.Tab("Full Leaderboard", id=1):
                md = make_full_leaderboard_md(elo_results)
                gr.Markdown(md, elem_id="leaderboard_markdown")
                full_table_vals = get_full_table(arena_df, model_table_df)
                gr.Dataframe(
                    headers=[
                        "Model",
                        "Arena Elo",
                        "MT-bench",
                        "MMLU",
                        "Organization",
                        "License",
                    ],
                    datatype=["markdown", "number", "number", "number", "str", "str"],
                    value=full_table_vals,
                    elem_id="full_leaderboard_dataframe",
                    column_widths=[200, 100, 100, 100, 150, 150],
                    height=700,
                    wrap=True,
                )
        if not show_plot:
            gr.Markdown(
                """ ## Visit our [HF space](https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard) for more analysis!
                If you want to see more models, please help us [add them](https://github.com/lm-sys/FastChat/blob/main/docs/arena.md#how-to-add-a-new-model).
                """,
                elem_id="leaderboard_markdown",
            )
    else:
        pass

    def update_leaderboard_df(arena_table_vals):
        elo_datarame = pd.DataFrame(
            arena_table_vals,
            columns=[
                "Rank* (UB)",
                "Delta",
                "Model",
                "Arena Elo",
                "95% CI",
                "Votes",
                "Organization",
                "License",
                "Knowledge Cutoff",
            ],
        )

        # goal: color the rows based on the rank with styler
        def highlight_max(s):
            # all items in S which contain up arrow should be green, down arrow should be red, otherwise black
            return [
                "color: green; font-weight: bold"
                if "\u2191" in v
                else "color: red; font-weight: bold"
                if "\u2193" in v
                else ""
                for v in s
            ]

        def highlight_rank_max(s):
            return [
                "color: green; font-weight: bold"
                if v > 0
                else "color: red; font-weight: bold"
                if v < 0
                else ""
                for v in s
            ]

        return elo_datarame.style.apply(highlight_max, subset=["Rank* (UB)"]).apply(
            highlight_rank_max, subset=["Delta"]
        )

    def update_leaderboard_and_plots(category):
        arena_subset_df = arena_dfs[category]
        arena_subset_df = arena_subset_df[arena_subset_df["num_battles"] > 300]
        elo_subset_results = category_elo_results[category]

        baseline_category = cat_name_to_baseline.get(category, "Overall")
        arena_df = arena_dfs[baseline_category]
        arena_values = get_arena_table(
            arena_df,
            model_table_df,
            arena_subset_df=arena_subset_df if category != "Overall" else None,
        )
        if category != "Overall":
            arena_values = update_leaderboard_df(arena_values)
            # arena_values = highlight_top_models(arena_values)
            arena_values = gr.Dataframe(
                headers=[
                    "Rank* (UB)",
                    "Delta",
                    "Model",
                    "Arena Elo",
                    "95% CI",
                    "Votes",
                    "Organization",
                    "License",
                    "Knowledge Cutoff",
                ],
                datatype=[
                    "str",
                    "number",
                    "markdown",
                    "number",
                    "str",
                    "number",
                    "str",
                    "str",
                    "str",
                ],
                value=arena_values,
                elem_id="arena_leaderboard_dataframe",
                height=700,
                column_widths=[70, 70, 200, 90, 100, 90, 120, 150, 100],
                wrap=True,
            )
        else:
            # not_arena_values = pd.DataFrame(arena_values, columns=["Rank* (UB)",
            #         "Model",
            #         "Arena Elo",
            #         "95% CI",
            #         "Votes",
            #         "Organization",
            #         "License",
            #         "Knowledge Cutoff",],
            #         )
            # arena_values = highlight_top_models(not_arena_values.style)
            arena_values = gr.Dataframe(
                headers=[
                    "Rank* (UB)",
                    "Model",
                    "Arena Elo",
                    "95% CI",
                    "Votes",
                    "Organization",
                    "License",
                    "Knowledge Cutoff",
                ],
                datatype=[
                    "str",
                    "markdown",
                    "number",
                    "str",
                    "number",
                    "str",
                    "str",
                    "str",
                ],
                value=arena_values,
                elem_id="arena_leaderboard_dataframe",
                height=700,
                column_widths=[70, 190, 100, 100, 90, 140, 150, 100],
                wrap=True,
            )

        p1 = elo_subset_results["win_fraction_heatmap"]
        p2 = elo_subset_results["battle_count_heatmap"]
        p3 = elo_subset_results["bootstrap_elo_rating"]
        p4 = elo_subset_results["average_win_rate_bar"]
        more_stats_md = f"""## More Statistics for Chatbot Arena - {category}
        """
        leaderboard_md = make_category_arena_leaderboard_md(
            arena_df, arena_subset_df, name=category
        )
        return arena_values, p1, p2, p3, p4, more_stats_md, leaderboard_md

    category_dropdown.change(
        update_leaderboard_and_plots,
        inputs=[category_dropdown],
        outputs=[
            elo_display_df,
            plot_1,
            plot_2,
            plot_3,
            plot_4,
            more_stats_md,
            category_deets,
        ],
    )

    from fastchat.serve.gradio_web_server import acknowledgment_md

    with gr.Accordion(
        "Citation",
        open=True,
    ):
        citation_md = """
            ### Citation
            Please cite the following paper if you find our leaderboard or dataset helpful.
            ```
            @misc{chiang2024chatbot,
                title={Chatbot Arena: An Open Platform for Evaluating LLMs by Human Preference},
                author={Wei-Lin Chiang and Lianmin Zheng and Ying Sheng and Anastasios Nikolas Angelopoulos and Tianle Li and Dacheng Li and Hao Zhang and Banghua Zhu and Michael Jordan and Joseph E. Gonzalez and Ion Stoica},
                year={2024},
                eprint={2403.04132},
                archivePrefix={arXiv},
                primaryClass={cs.AI}
            }
            """
        gr.Markdown(citation_md, elem_id="leaderboard_markdown")
        gr.Markdown(acknowledgment_md, elem_id="ack_markdown")

    if show_plot:
        return [md_1, plot_1, plot_2, plot_3, plot_4]
    return [md_1]


def build_demo(elo_results_file, leaderboard_table_file):
    from fastchat.serve.gradio_web_server import block_css

    text_size = gr.themes.sizes.text_lg
    # load theme from theme.json
    theme = gr.themes.Default.load("theme.json")
    # set text size to large
    theme.text_size = text_size
    theme.set(
        button_large_text_size="40px",
        button_small_text_size="40px",
        button_large_text_weight="1000",
        button_small_text_weight="1000",
        button_shadow="*shadow_drop_lg",
        button_shadow_hover="*shadow_drop_lg",
        checkbox_label_shadow="*shadow_drop_lg",
        button_shadow_active="*shadow_inset",
        button_secondary_background_fill="*primary_300",
        button_secondary_background_fill_dark="*primary_700",
        button_secondary_background_fill_hover="*primary_200",
        button_secondary_background_fill_hover_dark="*primary_500",
        button_secondary_text_color="*primary_800",
        button_secondary_text_color_dark="white",
    )

    with gr.Blocks(
        title="Chatbot Arena Leaderboard",
        # theme=gr.themes.Default(text_size=text_size),
        theme=theme,
        css=block_css,
    ) as demo:
        with gr.Tabs() as tabs:
            with gr.Tab("Leaderboard", id=0):
                leader_components = build_leaderboard_tab(
                    elo_results_file,
                    leaderboard_table_file,
                    show_plot=True,
                    mirror=False,
                )

            with gr.Tab("Basic Stats", id=1):
                basic_components = build_basic_stats_tab()

        url_params = gr.JSON(visible=False)
        demo.load(
            load_demo,
            [url_params],
            basic_components + leader_components,
            js=get_window_url_params_js,
        )

    return demo


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--host", type=str, default="0.0.0.0")
    parser.add_argument("--port", type=int)
    parser.add_argument("--share", action="store_true")
    parser.add_argument("--concurrency-count", type=int, default=10)
    parser.add_argument("--update-interval", type=int, default=300)
    parser.add_argument("--max-num-files", type=int)
    parser.add_argument("--elo-results-file", type=str)
    parser.add_argument("--leaderboard-table-file", type=str)
    parser.add_argument("--ban-ip-file", type=str)
    parser.add_argument("--exclude-model-names", type=str, nargs="+")
    args = parser.parse_args()

    logger = build_logger("monitor", "monitor.log")
    logger.info(f"args: {args}")

    if args.elo_results_file is None:  # Do live update
        update_thread = threading.Thread(
            target=update_worker,
            args=(
                args.max_num_files,
                args.update_interval,
                args.elo_results_file,
                args.ban_ip_file,
                args.exclude_model_names,
            ),
        )
        update_thread.start()

    demo = build_demo(args.elo_results_file, args.leaderboard_table_file)
    demo.queue(
        default_concurrency_limit=args.concurrency_count,
        status_update_rate=10,
        api_open=False,
    ).launch(
        server_name=args.host,
        server_port=args.port,
        share=args.share,
        max_threads=200,
    )