File size: 33,071 Bytes
6dc0c9c 2238fe2 6dc0c9c 2238fe2 6dc0c9c 2238fe2 6dc0c9c 2238fe2 6dc0c9c 2238fe2 6dc0c9c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 |
"""A server that provides OpenAI-compatible RESTful APIs. It supports:
- Chat Completions. (Reference: https://platform.openai.com/docs/api-reference/chat)
- Completions. (Reference: https://platform.openai.com/docs/api-reference/completions)
- Embeddings. (Reference: https://platform.openai.com/docs/api-reference/embeddings)
Usage:
python3 -m src.serve.openai_api_server
"""
import asyncio
import argparse
import json
import os
from typing import Generator, Optional, Union, Dict, List, Any
import aiohttp
import fastapi
from fastapi import Depends, HTTPException
from fastapi.exceptions import RequestValidationError
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import StreamingResponse, JSONResponse
from fastapi.security.http import HTTPAuthorizationCredentials, HTTPBearer
import httpx
from pydantic_settings import BaseSettings
import shortuuid
import tiktoken
import uvicorn
from src.constants import (
WORKER_API_TIMEOUT,
WORKER_API_EMBEDDING_BATCH_SIZE,
ErrorCode,
)
from src.conversation import Conversation, SeparatorStyle
from src.protocol.openai_api_protocol import (
ChatCompletionRequest,
ChatCompletionResponse,
ChatCompletionResponseStreamChoice,
ChatCompletionStreamResponse,
ChatMessage,
ChatCompletionResponseChoice,
CompletionRequest,
CompletionResponse,
CompletionResponseChoice,
DeltaMessage,
CompletionResponseStreamChoice,
CompletionStreamResponse,
EmbeddingsRequest,
EmbeddingsResponse,
ErrorResponse,
LogProbs,
ModelCard,
ModelList,
ModelPermission,
UsageInfo,
)
from src.protocol.api_protocol import (
APIChatCompletionRequest,
APITokenCheckRequest,
APITokenCheckResponse,
APITokenCheckResponseItem,
)
from src.utils import build_logger
logger = build_logger("openai_api_server", "openai_api_server.log")
conv_template_map = {}
fetch_timeout = aiohttp.ClientTimeout(total=3 * 3600)
async def fetch_remote(url, pload=None, name=None):
async with aiohttp.ClientSession(timeout=fetch_timeout) as session:
async with session.post(url, json=pload) as response:
chunks = []
if response.status != 200:
ret = {
"text": f"{response.reason}",
"error_code": ErrorCode.INTERNAL_ERROR,
}
return json.dumps(ret)
async for chunk, _ in response.content.iter_chunks():
chunks.append(chunk)
output = b"".join(chunks)
if name is not None:
res = json.loads(output)
if name != "":
res = res[name]
return res
return output
class AppSettings(BaseSettings):
# The address of the model controller.
controller_address: str = "http://localhost:21001"
api_keys: Optional[List[str]] = None
app_settings = AppSettings()
app = fastapi.FastAPI()
headers = {"User-Agent": "FastChat API Server"}
get_bearer_token = HTTPBearer(auto_error=False)
async def check_api_key(
auth: Optional[HTTPAuthorizationCredentials] = Depends(get_bearer_token),
) -> str:
if app_settings.api_keys:
if auth is None or (token := auth.credentials) not in app_settings.api_keys:
raise HTTPException(
status_code=401,
detail={
"error": {
"message": "",
"type": "invalid_request_error",
"param": None,
"code": "invalid_api_key",
}
},
)
return token
else:
# api_keys not set; allow all
return None
def create_error_response(code: int, message: str) -> JSONResponse:
return JSONResponse(
ErrorResponse(message=message, code=code).model_dump(), status_code=400
)
@app.exception_handler(RequestValidationError)
async def validation_exception_handler(request, exc):
return create_error_response(ErrorCode.VALIDATION_TYPE_ERROR, str(exc))
async def check_model(request) -> Optional[JSONResponse]:
controller_address = app_settings.controller_address
ret = None
models = await fetch_remote(controller_address + "/list_models", None, "models")
if request.model not in models:
ret = create_error_response(
ErrorCode.INVALID_MODEL,
f"Only {'&&'.join(models)} allowed now, your model {request.model}",
)
return ret
async def check_length(request, prompt, max_tokens, worker_addr):
if (
not isinstance(max_tokens, int) or max_tokens <= 0
): # model worker not support max_tokens=None
max_tokens = 1024 * 1024
context_len = await fetch_remote(
worker_addr + "/model_details", {"model": request.model}, "context_length"
)
token_num = await fetch_remote(
worker_addr + "/count_token",
{"model": request.model, "prompt": prompt},
"count",
)
length = min(max_tokens, context_len - token_num)
if length <= 0:
return None, create_error_response(
ErrorCode.CONTEXT_OVERFLOW,
f"This model's maximum context length is {context_len} tokens. However, your messages resulted in {token_num} tokens. Please reduce the length of the messages.",
)
return length, None
def check_requests(request) -> Optional[JSONResponse]:
# Check all params
if request.max_tokens is not None and request.max_tokens <= 0:
return create_error_response(
ErrorCode.PARAM_OUT_OF_RANGE,
f"{request.max_tokens} is less than the minimum of 1 - 'max_tokens'",
)
if request.n is not None and request.n <= 0:
return create_error_response(
ErrorCode.PARAM_OUT_OF_RANGE,
f"{request.n} is less than the minimum of 1 - 'n'",
)
if request.temperature is not None and request.temperature < 0:
return create_error_response(
ErrorCode.PARAM_OUT_OF_RANGE,
f"{request.temperature} is less than the minimum of 0 - 'temperature'",
)
if request.temperature is not None and request.temperature > 2:
return create_error_response(
ErrorCode.PARAM_OUT_OF_RANGE,
f"{request.temperature} is greater than the maximum of 2 - 'temperature'",
)
if request.top_p is not None and request.top_p < 0:
return create_error_response(
ErrorCode.PARAM_OUT_OF_RANGE,
f"{request.top_p} is less than the minimum of 0 - 'top_p'",
)
if request.top_p is not None and request.top_p > 1:
return create_error_response(
ErrorCode.PARAM_OUT_OF_RANGE,
f"{request.top_p} is greater than the maximum of 1 - 'top_p'",
)
if request.top_k is not None and (request.top_k > -1 and request.top_k < 1):
return create_error_response(
ErrorCode.PARAM_OUT_OF_RANGE,
f"{request.top_k} is out of Range. Either set top_k to -1 or >=1.",
)
if request.stop is not None and (
not isinstance(request.stop, str) and not isinstance(request.stop, list)
):
return create_error_response(
ErrorCode.PARAM_OUT_OF_RANGE,
f"{request.stop} is not valid under any of the given schemas - 'stop'",
)
return None
def process_input(model_name, inp):
if isinstance(inp, str):
inp = [inp]
elif isinstance(inp, list):
if isinstance(inp[0], int):
try:
decoding = tiktoken.model.encoding_for_model(model_name)
except KeyError:
logger.warning("Warning: model not found. Using cl100k_base encoding.")
model = "cl100k_base"
decoding = tiktoken.get_encoding(model)
inp = [decoding.decode(inp)]
elif isinstance(inp[0], list):
try:
decoding = tiktoken.model.encoding_for_model(model_name)
except KeyError:
logger.warning("Warning: model not found. Using cl100k_base encoding.")
model = "cl100k_base"
decoding = tiktoken.get_encoding(model)
inp = [decoding.decode(text) for text in inp]
return inp
def create_openai_logprobs(logprob_dict):
"""Create OpenAI-style logprobs."""
return LogProbs(**logprob_dict) if logprob_dict is not None else None
def _add_to_set(s, new_stop):
if not s:
return
if isinstance(s, str):
new_stop.add(s)
else:
new_stop.update(s)
async def get_gen_params(
model_name: str,
worker_addr: str,
messages: Union[str, List[Dict[str, str]]],
*,
temperature: float,
top_p: float,
top_k: Optional[int],
presence_penalty: Optional[float],
frequency_penalty: Optional[float],
max_tokens: Optional[int],
echo: Optional[bool],
logprobs: Optional[int] = None,
stop: Optional[Union[str, List[str]]],
best_of: Optional[int] = None,
use_beam_search: Optional[bool] = None,
) -> Dict[str, Any]:
conv = await get_conv(model_name, worker_addr)
conv = Conversation(
name=conv["name"],
system_template=conv["system_template"],
system_message=conv["system_message"],
roles=conv["roles"],
messages=list(conv["messages"]), # prevent in-place modification
offset=conv["offset"],
sep_style=SeparatorStyle(conv["sep_style"]),
sep=conv["sep"],
sep2=conv["sep2"],
stop_str=conv["stop_str"],
stop_token_ids=conv["stop_token_ids"],
)
if isinstance(messages, str):
prompt = messages
images = []
else:
for message in messages:
msg_role = message["role"]
if msg_role == "system":
conv.set_system_message(message["content"])
elif msg_role == "user":
if type(message["content"]) == list:
image_list = [
item["image_url"]["url"]
for item in message["content"]
if item["type"] == "image_url"
]
text_list = [
item["text"]
for item in message["content"]
if item["type"] == "text"
]
# TODO(chris): This only applies to LLaVA model. Implement an image_token string in the conv template.
text = "<image>\n" * len(image_list)
text += "\n".join(text_list)
conv.append_message(conv.roles[0], (text, image_list))
else:
conv.append_message(conv.roles[0], message["content"])
elif msg_role == "assistant":
conv.append_message(conv.roles[1], message["content"])
else:
raise ValueError(f"Unknown role: {msg_role}")
# Add a blank message for the assistant.
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
images = conv.get_images()
gen_params = {
"model": model_name,
"prompt": prompt,
"temperature": temperature,
"logprobs": logprobs,
"top_p": top_p,
"top_k": top_k,
"presence_penalty": presence_penalty,
"frequency_penalty": frequency_penalty,
"max_new_tokens": max_tokens,
"echo": echo,
"stop_token_ids": conv.stop_token_ids,
}
if len(images) > 0:
gen_params["images"] = images
if best_of is not None:
gen_params.update({"best_of": best_of})
if use_beam_search is not None:
gen_params.update({"use_beam_search": use_beam_search})
new_stop = set()
_add_to_set(stop, new_stop)
_add_to_set(conv.stop_str, new_stop)
gen_params["stop"] = list(new_stop)
logger.debug(f"==== request ====\n{gen_params}")
return gen_params
async def get_worker_address(model_name: str) -> str:
"""
Get worker address based on the requested model
:param model_name: The worker's model name
:return: Worker address from the controller
:raises: :class:`ValueError`: No available worker for requested model
"""
controller_address = app_settings.controller_address
worker_addr = await fetch_remote(
controller_address + "/get_worker_address", {"model": model_name}, "address"
)
# No available worker
if worker_addr == "":
raise ValueError(f"No available worker for {model_name}")
logger.debug(f"model_name: {model_name}, worker_addr: {worker_addr}")
return worker_addr
async def get_conv(model_name: str, worker_addr: str):
conv_template = conv_template_map.get((worker_addr, model_name))
if conv_template is None:
conv_template = await fetch_remote(
worker_addr + "/worker_get_conv_template", {"model": model_name}, "conv"
)
conv_template_map[(worker_addr, model_name)] = conv_template
return conv_template
@app.get("/v1/models", dependencies=[Depends(check_api_key)])
async def show_available_models():
controller_address = app_settings.controller_address
ret = await fetch_remote(controller_address + "/refresh_all_workers")
models = await fetch_remote(controller_address + "/list_models", None, "models")
models.sort()
# TODO: return real model permission details
model_cards = []
for m in models:
model_cards.append(ModelCard(id=m, root=m, permission=[ModelPermission()]))
return ModelList(data=model_cards)
@app.post("/v1/chat/completions", dependencies=[Depends(check_api_key)])
async def create_chat_completion(request: ChatCompletionRequest):
"""Creates a completion for the chat message"""
error_check_ret = await check_model(request)
if error_check_ret is not None:
return error_check_ret
error_check_ret = check_requests(request)
if error_check_ret is not None:
return error_check_ret
worker_addr = await get_worker_address(request.model)
gen_params = await get_gen_params(
request.model,
worker_addr,
request.messages,
temperature=request.temperature,
top_p=request.top_p,
top_k=request.top_k,
presence_penalty=request.presence_penalty,
frequency_penalty=request.frequency_penalty,
max_tokens=request.max_tokens,
echo=False,
stop=request.stop,
)
max_new_tokens, error_check_ret = await check_length(
request,
gen_params["prompt"],
gen_params["max_new_tokens"],
worker_addr,
)
if error_check_ret is not None:
return error_check_ret
gen_params["max_new_tokens"] = max_new_tokens
if request.stream:
generator = chat_completion_stream_generator(
request.model, gen_params, request.n, worker_addr
)
return StreamingResponse(generator, media_type="text/event-stream")
choices = []
chat_completions = []
for i in range(request.n):
content = asyncio.create_task(generate_completion(gen_params, worker_addr))
chat_completions.append(content)
try:
all_tasks = await asyncio.gather(*chat_completions)
except Exception as e:
return create_error_response(ErrorCode.INTERNAL_ERROR, str(e))
usage = UsageInfo()
for i, content in enumerate(all_tasks):
if isinstance(content, str):
content = json.loads(content)
if content["error_code"] != 0:
return create_error_response(content["error_code"], content["text"])
choices.append(
ChatCompletionResponseChoice(
index=i,
message=ChatMessage(role="assistant", content=content["text"]),
finish_reason=content.get("finish_reason", "stop"),
)
)
if "usage" in content:
task_usage = UsageInfo.model_validate(content["usage"])
for usage_key, usage_value in task_usage.model_dump().items():
setattr(usage, usage_key, getattr(usage, usage_key) + usage_value)
return ChatCompletionResponse(model=request.model, choices=choices, usage=usage)
async def chat_completion_stream_generator(
model_name: str, gen_params: Dict[str, Any], n: int, worker_addr: str
) -> Generator[str, Any, None]:
"""
Event stream format:
https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events#event_stream_format
"""
id = f"chatcmpl-{shortuuid.random()}"
finish_stream_events = []
for i in range(n):
# First chunk with role
choice_data = ChatCompletionResponseStreamChoice(
index=i,
delta=DeltaMessage(role="assistant"),
finish_reason=None,
)
chunk = ChatCompletionStreamResponse(
id=id, choices=[choice_data], model=model_name
)
yield f"data: {chunk.model_dump_json(exclude_unset=True)}\n\n"
previous_text = ""
async for content in generate_completion_stream(gen_params, worker_addr):
if content["error_code"] != 0:
yield f"data: {json.dumps(content, ensure_ascii=False)}\n\n"
yield "data: [DONE]\n\n"
return
decoded_unicode = content["text"].replace("\ufffd", "")
delta_text = decoded_unicode[len(previous_text) :]
previous_text = (
decoded_unicode
if len(decoded_unicode) > len(previous_text)
else previous_text
)
if len(delta_text) == 0:
delta_text = None
choice_data = ChatCompletionResponseStreamChoice(
index=i,
delta=DeltaMessage(content=delta_text),
finish_reason=content.get("finish_reason", None),
)
chunk = ChatCompletionStreamResponse(
id=id, choices=[choice_data], model=model_name
)
if delta_text is None:
if content.get("finish_reason", None) is not None:
finish_stream_events.append(chunk)
continue
yield f"data: {chunk.model_dump_json(exclude_unset=True)}\n\n"
# There is not "content" field in the last delta message, so exclude_none to exclude field "content".
for finish_chunk in finish_stream_events:
yield f"data: {finish_chunk.model_dump_json(exclude_none=True)}\n\n"
yield "data: [DONE]\n\n"
@app.post("/v1/completions", dependencies=[Depends(check_api_key)])
async def create_completion(request: CompletionRequest):
error_check_ret = await check_model(request)
if error_check_ret is not None:
return error_check_ret
error_check_ret = check_requests(request)
if error_check_ret is not None:
return error_check_ret
request.prompt = process_input(request.model, request.prompt)
worker_addr = await get_worker_address(request.model)
for text in request.prompt:
max_tokens, error_check_ret = await check_length(
request, text, request.max_tokens, worker_addr
)
if error_check_ret is not None:
return error_check_ret
if isinstance(max_tokens, int) and max_tokens < request.max_tokens:
request.max_tokens = max_tokens
if request.stream:
generator = generate_completion_stream_generator(
request, request.n, worker_addr
)
return StreamingResponse(generator, media_type="text/event-stream")
else:
text_completions = []
for text in request.prompt:
gen_params = await get_gen_params(
request.model,
worker_addr,
text,
temperature=request.temperature,
top_p=request.top_p,
top_k=request.top_k,
frequency_penalty=request.frequency_penalty,
presence_penalty=request.presence_penalty,
max_tokens=request.max_tokens,
logprobs=request.logprobs,
echo=request.echo,
stop=request.stop,
best_of=request.best_of,
use_beam_search=request.use_beam_search,
)
for i in range(request.n):
content = asyncio.create_task(
generate_completion(gen_params, worker_addr)
)
text_completions.append(content)
try:
all_tasks = await asyncio.gather(*text_completions)
except Exception as e:
return create_error_response(ErrorCode.INTERNAL_ERROR, str(e))
choices = []
usage = UsageInfo()
for i, content in enumerate(all_tasks):
if content["error_code"] != 0:
return create_error_response(content["error_code"], content["text"])
choices.append(
CompletionResponseChoice(
index=i,
text=content["text"],
logprobs=create_openai_logprobs(content.get("logprobs", None)),
finish_reason=content.get("finish_reason", "stop"),
)
)
task_usage = UsageInfo.model_validate(content["usage"])
for usage_key, usage_value in task_usage.model_dump().items():
setattr(usage, usage_key, getattr(usage, usage_key) + usage_value)
return CompletionResponse(
model=request.model, choices=choices, usage=UsageInfo.model_validate(usage)
)
async def generate_completion_stream_generator(
request: CompletionRequest, n: int, worker_addr: str
):
model_name = request.model
id = f"cmpl-{shortuuid.random()}"
finish_stream_events = []
for text in request.prompt:
for i in range(n):
previous_text = ""
gen_params = await get_gen_params(
request.model,
worker_addr,
text,
temperature=request.temperature,
top_p=request.top_p,
top_k=request.top_k,
presence_penalty=request.presence_penalty,
frequency_penalty=request.frequency_penalty,
max_tokens=request.max_tokens,
logprobs=request.logprobs,
echo=request.echo,
stop=request.stop,
)
async for content in generate_completion_stream(gen_params, worker_addr):
if content["error_code"] != 0:
yield f"data: {json.dumps(content, ensure_ascii=False)}\n\n"
yield "data: [DONE]\n\n"
return
decoded_unicode = content["text"].replace("\ufffd", "")
delta_text = decoded_unicode[len(previous_text) :]
previous_text = (
decoded_unicode
if len(decoded_unicode) > len(previous_text)
else previous_text
)
# todo: index is not apparent
choice_data = CompletionResponseStreamChoice(
index=i,
text=delta_text,
logprobs=create_openai_logprobs(content.get("logprobs", None)),
finish_reason=content.get("finish_reason", None),
)
chunk = CompletionStreamResponse(
id=id,
object="text_completion",
choices=[choice_data],
model=model_name,
)
if len(delta_text) == 0:
if content.get("finish_reason", None) is not None:
finish_stream_events.append(chunk)
continue
yield f"data: {chunk.model_dump_json(exclude_unset=True)}\n\n"
# There is not "content" field in the last delta message, so exclude_none to exclude field "content".
for finish_chunk in finish_stream_events:
yield f"data: {finish_chunk.model_dump_json(exclude_unset=True)}\n\n"
yield "data: [DONE]\n\n"
async def generate_completion_stream(payload: Dict[str, Any], worker_addr: str):
controller_address = app_settings.controller_address
async with httpx.AsyncClient() as client:
delimiter = b"\0"
async with client.stream(
"POST",
worker_addr + "/worker_generate_stream",
headers=headers,
json=payload,
timeout=WORKER_API_TIMEOUT,
) as response:
# content = await response.aread()
buffer = b""
async for raw_chunk in response.aiter_raw():
buffer += raw_chunk
while (chunk_end := buffer.find(delimiter)) >= 0:
chunk, buffer = buffer[:chunk_end], buffer[chunk_end + 1 :]
if not chunk:
continue
yield json.loads(chunk.decode())
async def generate_completion(payload: Dict[str, Any], worker_addr: str):
return await fetch_remote(worker_addr + "/worker_generate", payload, "")
@app.post("/v1/embeddings", dependencies=[Depends(check_api_key)])
@app.post("/v1/engines/{model_name}/embeddings", dependencies=[Depends(check_api_key)])
async def create_embeddings(request: EmbeddingsRequest, model_name: str = None):
"""Creates embeddings for the text"""
if request.model is None:
request.model = model_name
error_check_ret = await check_model(request)
if error_check_ret is not None:
return error_check_ret
request.input = process_input(request.model, request.input)
data = []
token_num = 0
batch_size = WORKER_API_EMBEDDING_BATCH_SIZE
batches = [
request.input[i : min(i + batch_size, len(request.input))]
for i in range(0, len(request.input), batch_size)
]
for num_batch, batch in enumerate(batches):
payload = {
"model": request.model,
"input": batch,
"encoding_format": request.encoding_format,
}
embedding = await get_embedding(payload)
if "error_code" in embedding and embedding["error_code"] != 0:
return create_error_response(embedding["error_code"], embedding["text"])
data += [
{
"object": "embedding",
"embedding": emb,
"index": num_batch * batch_size + i,
}
for i, emb in enumerate(embedding["embedding"])
]
token_num += embedding["token_num"]
return EmbeddingsResponse(
data=data,
model=request.model,
usage=UsageInfo(
prompt_tokens=token_num,
total_tokens=token_num,
completion_tokens=None,
),
).model_dump(exclude_none=True)
async def get_embedding(payload: Dict[str, Any]):
controller_address = app_settings.controller_address
model_name = payload["model"]
worker_addr = await get_worker_address(model_name)
embedding = await fetch_remote(worker_addr + "/worker_get_embeddings", payload)
return json.loads(embedding)
### GENERAL API - NOT OPENAI COMPATIBLE ###
@app.post("/api/v1/token_check")
async def count_tokens(request: APITokenCheckRequest):
"""
Checks the token count for each message in your list
This is not part of the OpenAI API spec.
"""
checkedList = []
for item in request.prompts:
worker_addr = await get_worker_address(item.model)
context_len = await fetch_remote(
worker_addr + "/model_details",
{"prompt": item.prompt, "model": item.model},
"context_length",
)
token_num = await fetch_remote(
worker_addr + "/count_token",
{"prompt": item.prompt, "model": item.model},
"count",
)
can_fit = True
if token_num + item.max_tokens > context_len:
can_fit = False
checkedList.append(
APITokenCheckResponseItem(
fits=can_fit, contextLength=context_len, tokenCount=token_num
)
)
return APITokenCheckResponse(prompts=checkedList)
@app.post("/api/v1/chat/completions")
async def create_chat_completion(request: APIChatCompletionRequest):
"""Creates a completion for the chat message"""
error_check_ret = await check_model(request)
if error_check_ret is not None:
return error_check_ret
error_check_ret = check_requests(request)
if error_check_ret is not None:
return error_check_ret
worker_addr = await get_worker_address(request.model)
gen_params = await get_gen_params(
request.model,
worker_addr,
request.messages,
temperature=request.temperature,
top_p=request.top_p,
top_k=request.top_k,
presence_penalty=request.presence_penalty,
frequency_penalty=request.frequency_penalty,
max_tokens=request.max_tokens,
echo=False,
stop=request.stop,
)
if request.repetition_penalty is not None:
gen_params["repetition_penalty"] = request.repetition_penalty
max_new_tokens, error_check_ret = await check_length(
request,
gen_params["prompt"],
gen_params["max_new_tokens"],
worker_addr,
)
if error_check_ret is not None:
return error_check_ret
gen_params["max_new_tokens"] = max_new_tokens
if request.stream:
generator = chat_completion_stream_generator(
request.model, gen_params, request.n, worker_addr
)
return StreamingResponse(generator, media_type="text/event-stream")
choices = []
chat_completions = []
for i in range(request.n):
content = asyncio.create_task(generate_completion(gen_params, worker_addr))
chat_completions.append(content)
try:
all_tasks = await asyncio.gather(*chat_completions)
except Exception as e:
return create_error_response(ErrorCode.INTERNAL_ERROR, str(e))
usage = UsageInfo()
for i, content in enumerate(all_tasks):
if content["error_code"] != 0:
return create_error_response(content["error_code"], content["text"])
choices.append(
ChatCompletionResponseChoice(
index=i,
message=ChatMessage(role="assistant", content=content["text"]),
finish_reason=content.get("finish_reason", "stop"),
)
)
task_usage = UsageInfo.model_validate(content["usage"])
for usage_key, usage_value in task_usage.model_dump().items():
setattr(usage, usage_key, getattr(usage, usage_key) + usage_value)
return ChatCompletionResponse(model=request.model, choices=choices, usage=usage)
### END GENERAL API - NOT OPENAI COMPATIBLE ###
def create_openai_api_server():
parser = argparse.ArgumentParser(
description="FastChat ChatGPT-Compatible RESTful API server."
)
parser.add_argument("--host", type=str, default="localhost", help="host name")
parser.add_argument("--port", type=int, default=8000, help="port number")
parser.add_argument(
"--controller-address", type=str, default="http://localhost:21001"
)
parser.add_argument(
"--allow-credentials", action="store_true", help="allow credentials"
)
parser.add_argument(
"--allowed-origins", type=json.loads, default=["*"], help="allowed origins"
)
parser.add_argument(
"--allowed-methods", type=json.loads, default=["*"], help="allowed methods"
)
parser.add_argument(
"--allowed-headers", type=json.loads, default=["*"], help="allowed headers"
)
parser.add_argument(
"--api-keys",
type=lambda s: s.split(","),
help="Optional list of comma separated API keys",
)
parser.add_argument(
"--ssl",
action="store_true",
required=False,
default=False,
help="Enable SSL. Requires OS Environment variables 'SSL_KEYFILE' and 'SSL_CERTFILE'.",
)
args = parser.parse_args()
app.add_middleware(
CORSMiddleware,
allow_origins=args.allowed_origins,
allow_credentials=args.allow_credentials,
allow_methods=args.allowed_methods,
allow_headers=args.allowed_headers,
)
app_settings.controller_address = args.controller_address
app_settings.api_keys = args.api_keys
logger.info(f"args: {args}")
return args
if __name__ == "__main__":
args = create_openai_api_server()
if args.ssl:
uvicorn.run(
app,
host=args.host,
port=args.port,
log_level="info",
ssl_keyfile=os.environ["SSL_KEYFILE"],
ssl_certfile=os.environ["SSL_CERTFILE"],
)
else:
uvicorn.run(app, host=args.host, port=args.port, log_level="info")
|