File size: 33,071 Bytes
6dc0c9c
 
 
 
 
 
 
2238fe2
6dc0c9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2238fe2
6dc0c9c
 
 
 
2238fe2
 
6dc0c9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2238fe2
6dc0c9c
 
 
 
 
2238fe2
6dc0c9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
"""A server that provides OpenAI-compatible RESTful APIs. It supports:

- Chat Completions. (Reference: https://platform.openai.com/docs/api-reference/chat)
- Completions. (Reference: https://platform.openai.com/docs/api-reference/completions)
- Embeddings. (Reference: https://platform.openai.com/docs/api-reference/embeddings)

Usage:
python3 -m src.serve.openai_api_server
"""
import asyncio
import argparse
import json
import os
from typing import Generator, Optional, Union, Dict, List, Any

import aiohttp
import fastapi
from fastapi import Depends, HTTPException
from fastapi.exceptions import RequestValidationError
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import StreamingResponse, JSONResponse
from fastapi.security.http import HTTPAuthorizationCredentials, HTTPBearer
import httpx

from pydantic_settings import BaseSettings
import shortuuid
import tiktoken
import uvicorn

from src.constants import (
    WORKER_API_TIMEOUT,
    WORKER_API_EMBEDDING_BATCH_SIZE,
    ErrorCode,
)
from src.conversation import Conversation, SeparatorStyle
from src.protocol.openai_api_protocol import (
    ChatCompletionRequest,
    ChatCompletionResponse,
    ChatCompletionResponseStreamChoice,
    ChatCompletionStreamResponse,
    ChatMessage,
    ChatCompletionResponseChoice,
    CompletionRequest,
    CompletionResponse,
    CompletionResponseChoice,
    DeltaMessage,
    CompletionResponseStreamChoice,
    CompletionStreamResponse,
    EmbeddingsRequest,
    EmbeddingsResponse,
    ErrorResponse,
    LogProbs,
    ModelCard,
    ModelList,
    ModelPermission,
    UsageInfo,
)
from src.protocol.api_protocol import (
    APIChatCompletionRequest,
    APITokenCheckRequest,
    APITokenCheckResponse,
    APITokenCheckResponseItem,
)
from src.utils import build_logger

logger = build_logger("openai_api_server", "openai_api_server.log")

conv_template_map = {}

fetch_timeout = aiohttp.ClientTimeout(total=3 * 3600)


async def fetch_remote(url, pload=None, name=None):
    async with aiohttp.ClientSession(timeout=fetch_timeout) as session:
        async with session.post(url, json=pload) as response:
            chunks = []
            if response.status != 200:
                ret = {
                    "text": f"{response.reason}",
                    "error_code": ErrorCode.INTERNAL_ERROR,
                }
                return json.dumps(ret)

            async for chunk, _ in response.content.iter_chunks():
                chunks.append(chunk)
        output = b"".join(chunks)

    if name is not None:
        res = json.loads(output)
        if name != "":
            res = res[name]
        return res

    return output


class AppSettings(BaseSettings):
    # The address of the model controller.
    controller_address: str = "http://localhost:21001"
    api_keys: Optional[List[str]] = None


app_settings = AppSettings()
app = fastapi.FastAPI()
headers = {"User-Agent": "FastChat API Server"}
get_bearer_token = HTTPBearer(auto_error=False)


async def check_api_key(
    auth: Optional[HTTPAuthorizationCredentials] = Depends(get_bearer_token),
) -> str:
    if app_settings.api_keys:
        if auth is None or (token := auth.credentials) not in app_settings.api_keys:
            raise HTTPException(
                status_code=401,
                detail={
                    "error": {
                        "message": "",
                        "type": "invalid_request_error",
                        "param": None,
                        "code": "invalid_api_key",
                    }
                },
            )
        return token
    else:
        # api_keys not set; allow all
        return None


def create_error_response(code: int, message: str) -> JSONResponse:
    return JSONResponse(
        ErrorResponse(message=message, code=code).model_dump(), status_code=400
    )


@app.exception_handler(RequestValidationError)
async def validation_exception_handler(request, exc):
    return create_error_response(ErrorCode.VALIDATION_TYPE_ERROR, str(exc))


async def check_model(request) -> Optional[JSONResponse]:
    controller_address = app_settings.controller_address
    ret = None

    models = await fetch_remote(controller_address + "/list_models", None, "models")
    if request.model not in models:
        ret = create_error_response(
            ErrorCode.INVALID_MODEL,
            f"Only {'&&'.join(models)} allowed now, your model {request.model}",
        )
    return ret


async def check_length(request, prompt, max_tokens, worker_addr):
    if (
        not isinstance(max_tokens, int) or max_tokens <= 0
    ):  # model worker not support max_tokens=None
        max_tokens = 1024 * 1024

    context_len = await fetch_remote(
        worker_addr + "/model_details", {"model": request.model}, "context_length"
    )
    token_num = await fetch_remote(
        worker_addr + "/count_token",
        {"model": request.model, "prompt": prompt},
        "count",
    )
    length = min(max_tokens, context_len - token_num)

    if length <= 0:
        return None, create_error_response(
            ErrorCode.CONTEXT_OVERFLOW,
            f"This model's maximum context length is {context_len} tokens. However, your messages resulted in {token_num} tokens. Please reduce the length of the messages.",
        )

    return length, None


def check_requests(request) -> Optional[JSONResponse]:
    # Check all params
    if request.max_tokens is not None and request.max_tokens <= 0:
        return create_error_response(
            ErrorCode.PARAM_OUT_OF_RANGE,
            f"{request.max_tokens} is less than the minimum of 1 - 'max_tokens'",
        )
    if request.n is not None and request.n <= 0:
        return create_error_response(
            ErrorCode.PARAM_OUT_OF_RANGE,
            f"{request.n} is less than the minimum of 1 - 'n'",
        )
    if request.temperature is not None and request.temperature < 0:
        return create_error_response(
            ErrorCode.PARAM_OUT_OF_RANGE,
            f"{request.temperature} is less than the minimum of 0 - 'temperature'",
        )
    if request.temperature is not None and request.temperature > 2:
        return create_error_response(
            ErrorCode.PARAM_OUT_OF_RANGE,
            f"{request.temperature} is greater than the maximum of 2 - 'temperature'",
        )
    if request.top_p is not None and request.top_p < 0:
        return create_error_response(
            ErrorCode.PARAM_OUT_OF_RANGE,
            f"{request.top_p} is less than the minimum of 0 - 'top_p'",
        )
    if request.top_p is not None and request.top_p > 1:
        return create_error_response(
            ErrorCode.PARAM_OUT_OF_RANGE,
            f"{request.top_p} is greater than the maximum of 1 - 'top_p'",
        )
    if request.top_k is not None and (request.top_k > -1 and request.top_k < 1):
        return create_error_response(
            ErrorCode.PARAM_OUT_OF_RANGE,
            f"{request.top_k} is out of Range. Either set top_k to -1 or >=1.",
        )
    if request.stop is not None and (
        not isinstance(request.stop, str) and not isinstance(request.stop, list)
    ):
        return create_error_response(
            ErrorCode.PARAM_OUT_OF_RANGE,
            f"{request.stop} is not valid under any of the given schemas - 'stop'",
        )

    return None


def process_input(model_name, inp):
    if isinstance(inp, str):
        inp = [inp]
    elif isinstance(inp, list):
        if isinstance(inp[0], int):
            try:
                decoding = tiktoken.model.encoding_for_model(model_name)
            except KeyError:
                logger.warning("Warning: model not found. Using cl100k_base encoding.")
                model = "cl100k_base"
                decoding = tiktoken.get_encoding(model)
            inp = [decoding.decode(inp)]
        elif isinstance(inp[0], list):
            try:
                decoding = tiktoken.model.encoding_for_model(model_name)
            except KeyError:
                logger.warning("Warning: model not found. Using cl100k_base encoding.")
                model = "cl100k_base"
                decoding = tiktoken.get_encoding(model)
            inp = [decoding.decode(text) for text in inp]

    return inp


def create_openai_logprobs(logprob_dict):
    """Create OpenAI-style logprobs."""
    return LogProbs(**logprob_dict) if logprob_dict is not None else None


def _add_to_set(s, new_stop):
    if not s:
        return
    if isinstance(s, str):
        new_stop.add(s)
    else:
        new_stop.update(s)


async def get_gen_params(
    model_name: str,
    worker_addr: str,
    messages: Union[str, List[Dict[str, str]]],
    *,
    temperature: float,
    top_p: float,
    top_k: Optional[int],
    presence_penalty: Optional[float],
    frequency_penalty: Optional[float],
    max_tokens: Optional[int],
    echo: Optional[bool],
    logprobs: Optional[int] = None,
    stop: Optional[Union[str, List[str]]],
    best_of: Optional[int] = None,
    use_beam_search: Optional[bool] = None,
) -> Dict[str, Any]:
    conv = await get_conv(model_name, worker_addr)
    conv = Conversation(
        name=conv["name"],
        system_template=conv["system_template"],
        system_message=conv["system_message"],
        roles=conv["roles"],
        messages=list(conv["messages"]),  # prevent in-place modification
        offset=conv["offset"],
        sep_style=SeparatorStyle(conv["sep_style"]),
        sep=conv["sep"],
        sep2=conv["sep2"],
        stop_str=conv["stop_str"],
        stop_token_ids=conv["stop_token_ids"],
    )

    if isinstance(messages, str):
        prompt = messages
        images = []
    else:
        for message in messages:
            msg_role = message["role"]
            if msg_role == "system":
                conv.set_system_message(message["content"])
            elif msg_role == "user":
                if type(message["content"]) == list:
                    image_list = [
                        item["image_url"]["url"]
                        for item in message["content"]
                        if item["type"] == "image_url"
                    ]
                    text_list = [
                        item["text"]
                        for item in message["content"]
                        if item["type"] == "text"
                    ]

                    # TODO(chris): This only applies to LLaVA model. Implement an image_token string in the conv template.
                    text = "<image>\n" * len(image_list)
                    text += "\n".join(text_list)
                    conv.append_message(conv.roles[0], (text, image_list))
                else:
                    conv.append_message(conv.roles[0], message["content"])
            elif msg_role == "assistant":
                conv.append_message(conv.roles[1], message["content"])
            else:
                raise ValueError(f"Unknown role: {msg_role}")

        # Add a blank message for the assistant.
        conv.append_message(conv.roles[1], None)
        prompt = conv.get_prompt()
        images = conv.get_images()

    gen_params = {
        "model": model_name,
        "prompt": prompt,
        "temperature": temperature,
        "logprobs": logprobs,
        "top_p": top_p,
        "top_k": top_k,
        "presence_penalty": presence_penalty,
        "frequency_penalty": frequency_penalty,
        "max_new_tokens": max_tokens,
        "echo": echo,
        "stop_token_ids": conv.stop_token_ids,
    }

    if len(images) > 0:
        gen_params["images"] = images

    if best_of is not None:
        gen_params.update({"best_of": best_of})
    if use_beam_search is not None:
        gen_params.update({"use_beam_search": use_beam_search})

    new_stop = set()
    _add_to_set(stop, new_stop)
    _add_to_set(conv.stop_str, new_stop)

    gen_params["stop"] = list(new_stop)

    logger.debug(f"==== request ====\n{gen_params}")
    return gen_params


async def get_worker_address(model_name: str) -> str:
    """
    Get worker address based on the requested model

    :param model_name: The worker's model name
    :return: Worker address from the controller
    :raises: :class:`ValueError`: No available worker for requested model
    """
    controller_address = app_settings.controller_address
    worker_addr = await fetch_remote(
        controller_address + "/get_worker_address", {"model": model_name}, "address"
    )

    # No available worker
    if worker_addr == "":
        raise ValueError(f"No available worker for {model_name}")
    logger.debug(f"model_name: {model_name}, worker_addr: {worker_addr}")
    return worker_addr


async def get_conv(model_name: str, worker_addr: str):
    conv_template = conv_template_map.get((worker_addr, model_name))
    if conv_template is None:
        conv_template = await fetch_remote(
            worker_addr + "/worker_get_conv_template", {"model": model_name}, "conv"
        )
        conv_template_map[(worker_addr, model_name)] = conv_template
    return conv_template


@app.get("/v1/models", dependencies=[Depends(check_api_key)])
async def show_available_models():
    controller_address = app_settings.controller_address
    ret = await fetch_remote(controller_address + "/refresh_all_workers")
    models = await fetch_remote(controller_address + "/list_models", None, "models")

    models.sort()
    # TODO: return real model permission details
    model_cards = []
    for m in models:
        model_cards.append(ModelCard(id=m, root=m, permission=[ModelPermission()]))
    return ModelList(data=model_cards)


@app.post("/v1/chat/completions", dependencies=[Depends(check_api_key)])
async def create_chat_completion(request: ChatCompletionRequest):
    """Creates a completion for the chat message"""
    error_check_ret = await check_model(request)
    if error_check_ret is not None:
        return error_check_ret
    error_check_ret = check_requests(request)
    if error_check_ret is not None:
        return error_check_ret

    worker_addr = await get_worker_address(request.model)

    gen_params = await get_gen_params(
        request.model,
        worker_addr,
        request.messages,
        temperature=request.temperature,
        top_p=request.top_p,
        top_k=request.top_k,
        presence_penalty=request.presence_penalty,
        frequency_penalty=request.frequency_penalty,
        max_tokens=request.max_tokens,
        echo=False,
        stop=request.stop,
    )

    max_new_tokens, error_check_ret = await check_length(
        request,
        gen_params["prompt"],
        gen_params["max_new_tokens"],
        worker_addr,
    )

    if error_check_ret is not None:
        return error_check_ret

    gen_params["max_new_tokens"] = max_new_tokens

    if request.stream:
        generator = chat_completion_stream_generator(
            request.model, gen_params, request.n, worker_addr
        )
        return StreamingResponse(generator, media_type="text/event-stream")

    choices = []
    chat_completions = []
    for i in range(request.n):
        content = asyncio.create_task(generate_completion(gen_params, worker_addr))
        chat_completions.append(content)
    try:
        all_tasks = await asyncio.gather(*chat_completions)
    except Exception as e:
        return create_error_response(ErrorCode.INTERNAL_ERROR, str(e))
    usage = UsageInfo()
    for i, content in enumerate(all_tasks):
        if isinstance(content, str):
            content = json.loads(content)

        if content["error_code"] != 0:
            return create_error_response(content["error_code"], content["text"])
        choices.append(
            ChatCompletionResponseChoice(
                index=i,
                message=ChatMessage(role="assistant", content=content["text"]),
                finish_reason=content.get("finish_reason", "stop"),
            )
        )
        if "usage" in content:
            task_usage = UsageInfo.model_validate(content["usage"])
            for usage_key, usage_value in task_usage.model_dump().items():
                setattr(usage, usage_key, getattr(usage, usage_key) + usage_value)

    return ChatCompletionResponse(model=request.model, choices=choices, usage=usage)


async def chat_completion_stream_generator(
    model_name: str, gen_params: Dict[str, Any], n: int, worker_addr: str
) -> Generator[str, Any, None]:
    """
    Event stream format:
    https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events#event_stream_format
    """
    id = f"chatcmpl-{shortuuid.random()}"
    finish_stream_events = []
    for i in range(n):
        # First chunk with role
        choice_data = ChatCompletionResponseStreamChoice(
            index=i,
            delta=DeltaMessage(role="assistant"),
            finish_reason=None,
        )
        chunk = ChatCompletionStreamResponse(
            id=id, choices=[choice_data], model=model_name
        )
        yield f"data: {chunk.model_dump_json(exclude_unset=True)}\n\n"

        previous_text = ""
        async for content in generate_completion_stream(gen_params, worker_addr):
            if content["error_code"] != 0:
                yield f"data: {json.dumps(content, ensure_ascii=False)}\n\n"
                yield "data: [DONE]\n\n"
                return
            decoded_unicode = content["text"].replace("\ufffd", "")
            delta_text = decoded_unicode[len(previous_text) :]
            previous_text = (
                decoded_unicode
                if len(decoded_unicode) > len(previous_text)
                else previous_text
            )

            if len(delta_text) == 0:
                delta_text = None
            choice_data = ChatCompletionResponseStreamChoice(
                index=i,
                delta=DeltaMessage(content=delta_text),
                finish_reason=content.get("finish_reason", None),
            )
            chunk = ChatCompletionStreamResponse(
                id=id, choices=[choice_data], model=model_name
            )
            if delta_text is None:
                if content.get("finish_reason", None) is not None:
                    finish_stream_events.append(chunk)
                continue
            yield f"data: {chunk.model_dump_json(exclude_unset=True)}\n\n"
    # There is not "content" field in the last delta message, so exclude_none to exclude field "content".
    for finish_chunk in finish_stream_events:
        yield f"data: {finish_chunk.model_dump_json(exclude_none=True)}\n\n"
    yield "data: [DONE]\n\n"


@app.post("/v1/completions", dependencies=[Depends(check_api_key)])
async def create_completion(request: CompletionRequest):
    error_check_ret = await check_model(request)
    if error_check_ret is not None:
        return error_check_ret
    error_check_ret = check_requests(request)
    if error_check_ret is not None:
        return error_check_ret

    request.prompt = process_input(request.model, request.prompt)

    worker_addr = await get_worker_address(request.model)
    for text in request.prompt:
        max_tokens, error_check_ret = await check_length(
            request, text, request.max_tokens, worker_addr
        )
        if error_check_ret is not None:
            return error_check_ret

        if isinstance(max_tokens, int) and max_tokens < request.max_tokens:
            request.max_tokens = max_tokens

    if request.stream:
        generator = generate_completion_stream_generator(
            request, request.n, worker_addr
        )
        return StreamingResponse(generator, media_type="text/event-stream")
    else:
        text_completions = []
        for text in request.prompt:
            gen_params = await get_gen_params(
                request.model,
                worker_addr,
                text,
                temperature=request.temperature,
                top_p=request.top_p,
                top_k=request.top_k,
                frequency_penalty=request.frequency_penalty,
                presence_penalty=request.presence_penalty,
                max_tokens=request.max_tokens,
                logprobs=request.logprobs,
                echo=request.echo,
                stop=request.stop,
                best_of=request.best_of,
                use_beam_search=request.use_beam_search,
            )
            for i in range(request.n):
                content = asyncio.create_task(
                    generate_completion(gen_params, worker_addr)
                )
                text_completions.append(content)

        try:
            all_tasks = await asyncio.gather(*text_completions)
        except Exception as e:
            return create_error_response(ErrorCode.INTERNAL_ERROR, str(e))

        choices = []
        usage = UsageInfo()
        for i, content in enumerate(all_tasks):
            if content["error_code"] != 0:
                return create_error_response(content["error_code"], content["text"])
            choices.append(
                CompletionResponseChoice(
                    index=i,
                    text=content["text"],
                    logprobs=create_openai_logprobs(content.get("logprobs", None)),
                    finish_reason=content.get("finish_reason", "stop"),
                )
            )
            task_usage = UsageInfo.model_validate(content["usage"])
            for usage_key, usage_value in task_usage.model_dump().items():
                setattr(usage, usage_key, getattr(usage, usage_key) + usage_value)

        return CompletionResponse(
            model=request.model, choices=choices, usage=UsageInfo.model_validate(usage)
        )


async def generate_completion_stream_generator(
    request: CompletionRequest, n: int, worker_addr: str
):
    model_name = request.model
    id = f"cmpl-{shortuuid.random()}"
    finish_stream_events = []
    for text in request.prompt:
        for i in range(n):
            previous_text = ""
            gen_params = await get_gen_params(
                request.model,
                worker_addr,
                text,
                temperature=request.temperature,
                top_p=request.top_p,
                top_k=request.top_k,
                presence_penalty=request.presence_penalty,
                frequency_penalty=request.frequency_penalty,
                max_tokens=request.max_tokens,
                logprobs=request.logprobs,
                echo=request.echo,
                stop=request.stop,
            )
            async for content in generate_completion_stream(gen_params, worker_addr):
                if content["error_code"] != 0:
                    yield f"data: {json.dumps(content, ensure_ascii=False)}\n\n"
                    yield "data: [DONE]\n\n"
                    return
                decoded_unicode = content["text"].replace("\ufffd", "")
                delta_text = decoded_unicode[len(previous_text) :]
                previous_text = (
                    decoded_unicode
                    if len(decoded_unicode) > len(previous_text)
                    else previous_text
                )
                # todo: index is not apparent
                choice_data = CompletionResponseStreamChoice(
                    index=i,
                    text=delta_text,
                    logprobs=create_openai_logprobs(content.get("logprobs", None)),
                    finish_reason=content.get("finish_reason", None),
                )
                chunk = CompletionStreamResponse(
                    id=id,
                    object="text_completion",
                    choices=[choice_data],
                    model=model_name,
                )
                if len(delta_text) == 0:
                    if content.get("finish_reason", None) is not None:
                        finish_stream_events.append(chunk)
                    continue
                yield f"data: {chunk.model_dump_json(exclude_unset=True)}\n\n"
    # There is not "content" field in the last delta message, so exclude_none to exclude field "content".
    for finish_chunk in finish_stream_events:
        yield f"data: {finish_chunk.model_dump_json(exclude_unset=True)}\n\n"
    yield "data: [DONE]\n\n"


async def generate_completion_stream(payload: Dict[str, Any], worker_addr: str):
    controller_address = app_settings.controller_address
    async with httpx.AsyncClient() as client:
        delimiter = b"\0"
        async with client.stream(
            "POST",
            worker_addr + "/worker_generate_stream",
            headers=headers,
            json=payload,
            timeout=WORKER_API_TIMEOUT,
        ) as response:
            # content = await response.aread()
            buffer = b""
            async for raw_chunk in response.aiter_raw():
                buffer += raw_chunk
                while (chunk_end := buffer.find(delimiter)) >= 0:
                    chunk, buffer = buffer[:chunk_end], buffer[chunk_end + 1 :]
                    if not chunk:
                        continue
                    yield json.loads(chunk.decode())


async def generate_completion(payload: Dict[str, Any], worker_addr: str):
    return await fetch_remote(worker_addr + "/worker_generate", payload, "")


@app.post("/v1/embeddings", dependencies=[Depends(check_api_key)])
@app.post("/v1/engines/{model_name}/embeddings", dependencies=[Depends(check_api_key)])
async def create_embeddings(request: EmbeddingsRequest, model_name: str = None):
    """Creates embeddings for the text"""
    if request.model is None:
        request.model = model_name
    error_check_ret = await check_model(request)
    if error_check_ret is not None:
        return error_check_ret

    request.input = process_input(request.model, request.input)

    data = []
    token_num = 0
    batch_size = WORKER_API_EMBEDDING_BATCH_SIZE
    batches = [
        request.input[i : min(i + batch_size, len(request.input))]
        for i in range(0, len(request.input), batch_size)
    ]
    for num_batch, batch in enumerate(batches):
        payload = {
            "model": request.model,
            "input": batch,
            "encoding_format": request.encoding_format,
        }
        embedding = await get_embedding(payload)
        if "error_code" in embedding and embedding["error_code"] != 0:
            return create_error_response(embedding["error_code"], embedding["text"])
        data += [
            {
                "object": "embedding",
                "embedding": emb,
                "index": num_batch * batch_size + i,
            }
            for i, emb in enumerate(embedding["embedding"])
        ]
        token_num += embedding["token_num"]
    return EmbeddingsResponse(
        data=data,
        model=request.model,
        usage=UsageInfo(
            prompt_tokens=token_num,
            total_tokens=token_num,
            completion_tokens=None,
        ),
    ).model_dump(exclude_none=True)


async def get_embedding(payload: Dict[str, Any]):
    controller_address = app_settings.controller_address
    model_name = payload["model"]
    worker_addr = await get_worker_address(model_name)

    embedding = await fetch_remote(worker_addr + "/worker_get_embeddings", payload)
    return json.loads(embedding)


### GENERAL API - NOT OPENAI COMPATIBLE ###


@app.post("/api/v1/token_check")
async def count_tokens(request: APITokenCheckRequest):
    """
    Checks the token count for each message in your list
    This is not part of the OpenAI API spec.
    """
    checkedList = []
    for item in request.prompts:
        worker_addr = await get_worker_address(item.model)

        context_len = await fetch_remote(
            worker_addr + "/model_details",
            {"prompt": item.prompt, "model": item.model},
            "context_length",
        )

        token_num = await fetch_remote(
            worker_addr + "/count_token",
            {"prompt": item.prompt, "model": item.model},
            "count",
        )

        can_fit = True
        if token_num + item.max_tokens > context_len:
            can_fit = False

        checkedList.append(
            APITokenCheckResponseItem(
                fits=can_fit, contextLength=context_len, tokenCount=token_num
            )
        )

    return APITokenCheckResponse(prompts=checkedList)


@app.post("/api/v1/chat/completions")
async def create_chat_completion(request: APIChatCompletionRequest):
    """Creates a completion for the chat message"""
    error_check_ret = await check_model(request)
    if error_check_ret is not None:
        return error_check_ret
    error_check_ret = check_requests(request)
    if error_check_ret is not None:
        return error_check_ret

    worker_addr = await get_worker_address(request.model)

    gen_params = await get_gen_params(
        request.model,
        worker_addr,
        request.messages,
        temperature=request.temperature,
        top_p=request.top_p,
        top_k=request.top_k,
        presence_penalty=request.presence_penalty,
        frequency_penalty=request.frequency_penalty,
        max_tokens=request.max_tokens,
        echo=False,
        stop=request.stop,
    )

    if request.repetition_penalty is not None:
        gen_params["repetition_penalty"] = request.repetition_penalty

    max_new_tokens, error_check_ret = await check_length(
        request,
        gen_params["prompt"],
        gen_params["max_new_tokens"],
        worker_addr,
    )

    if error_check_ret is not None:
        return error_check_ret

    gen_params["max_new_tokens"] = max_new_tokens

    if request.stream:
        generator = chat_completion_stream_generator(
            request.model, gen_params, request.n, worker_addr
        )
        return StreamingResponse(generator, media_type="text/event-stream")

    choices = []
    chat_completions = []
    for i in range(request.n):
        content = asyncio.create_task(generate_completion(gen_params, worker_addr))
        chat_completions.append(content)
    try:
        all_tasks = await asyncio.gather(*chat_completions)
    except Exception as e:
        return create_error_response(ErrorCode.INTERNAL_ERROR, str(e))
    usage = UsageInfo()
    for i, content in enumerate(all_tasks):
        if content["error_code"] != 0:
            return create_error_response(content["error_code"], content["text"])
        choices.append(
            ChatCompletionResponseChoice(
                index=i,
                message=ChatMessage(role="assistant", content=content["text"]),
                finish_reason=content.get("finish_reason", "stop"),
            )
        )
        task_usage = UsageInfo.model_validate(content["usage"])
        for usage_key, usage_value in task_usage.model_dump().items():
            setattr(usage, usage_key, getattr(usage, usage_key) + usage_value)

    return ChatCompletionResponse(model=request.model, choices=choices, usage=usage)


### END GENERAL API - NOT OPENAI COMPATIBLE ###


def create_openai_api_server():
    parser = argparse.ArgumentParser(
        description="FastChat ChatGPT-Compatible RESTful API server."
    )
    parser.add_argument("--host", type=str, default="localhost", help="host name")
    parser.add_argument("--port", type=int, default=8000, help="port number")
    parser.add_argument(
        "--controller-address", type=str, default="http://localhost:21001"
    )
    parser.add_argument(
        "--allow-credentials", action="store_true", help="allow credentials"
    )
    parser.add_argument(
        "--allowed-origins", type=json.loads, default=["*"], help="allowed origins"
    )
    parser.add_argument(
        "--allowed-methods", type=json.loads, default=["*"], help="allowed methods"
    )
    parser.add_argument(
        "--allowed-headers", type=json.loads, default=["*"], help="allowed headers"
    )
    parser.add_argument(
        "--api-keys",
        type=lambda s: s.split(","),
        help="Optional list of comma separated API keys",
    )
    parser.add_argument(
        "--ssl",
        action="store_true",
        required=False,
        default=False,
        help="Enable SSL. Requires OS Environment variables 'SSL_KEYFILE' and 'SSL_CERTFILE'.",
    )
    args = parser.parse_args()

    app.add_middleware(
        CORSMiddleware,
        allow_origins=args.allowed_origins,
        allow_credentials=args.allow_credentials,
        allow_methods=args.allowed_methods,
        allow_headers=args.allowed_headers,
    )
    app_settings.controller_address = args.controller_address
    app_settings.api_keys = args.api_keys

    logger.info(f"args: {args}")
    return args


if __name__ == "__main__":
    args = create_openai_api_server()
    if args.ssl:
        uvicorn.run(
            app,
            host=args.host,
            port=args.port,
            log_level="info",
            ssl_keyfile=os.environ["SSL_KEYFILE"],
            ssl_certfile=os.environ["SSL_CERTFILE"],
        )
    else:
        uvicorn.run(app, host=args.host, port=args.port, log_level="info")