File size: 33,569 Bytes
6dc0c9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
"""
The gradio demo server for chatting with a single model.
"""

import argparse
from collections import defaultdict
import datetime
import hashlib
import json
import os
import random
import time
import uuid

import gradio as gr
import requests

from src.constants import (
    LOGDIR,
    WORKER_API_TIMEOUT,
    ErrorCode,
    MODERATION_MSG,
    CONVERSATION_LIMIT_MSG,
    RATE_LIMIT_MSG,
    SERVER_ERROR_MSG,
    INPUT_CHAR_LEN_LIMIT,
    CONVERSATION_TURN_LIMIT,
    SESSION_EXPIRATION_TIME,
)
from src.model.model_adapter import (
    get_conversation_template,
)
from src.model.model_registry import get_model_info, model_info
from src.serve.api_provider import get_api_provider_stream_iter
from src.serve.remote_logger import get_remote_logger
from src.utils import (
    build_logger,
    get_window_url_params_js,
    get_window_url_params_with_tos_js,
    moderation_filter,
    parse_gradio_auth_creds,
    load_image,
)

logger = build_logger("gradio_web_server", "gradio_web_server.log")

headers = {"User-Agent": "FastChat Client"}

no_change_btn = gr.Button()
enable_btn = gr.Button(interactive=True, visible=True)
disable_btn = gr.Button(interactive=False)
invisible_btn = gr.Button(interactive=False, visible=False)

controller_url = None
enable_moderation = False
use_remote_storage = False

acknowledgment_md = """
### Terms of Service

Users are required to agree to the following terms before using the service:

The service is a research preview. It only provides limited safety measures and may generate offensive content.
It must not be used for any illegal, harmful, violent, racist, or sexual purposes.
Please do not upload any private information.
The service collects user dialogue data, including both text and images, and reserves the right to distribute it under a Creative Commons Attribution (CC-BY) or a similar license.

### Acknowledgment
We thank [UC Berkeley SkyLab](https://sky.cs.berkeley.edu/), [Kaggle](https://www.kaggle.com/), [MBZUAI](https://mbzuai.ac.ae/), [a16z](https://www.a16z.com/), [Together AI](https://www.together.ai/), [Hyperbolic](https://hyperbolic.xyz/), [Anyscale](https://www.anyscale.com/), [HuggingFace](https://huggingface.co/) for their generous [sponsorship](https://lmsys.org/donations/).

<div class="sponsor-image-about">
    <img src="https://storage.googleapis.com/public-arena-asset/skylab.png" alt="SkyLab">
    <img src="https://storage.googleapis.com/public-arena-asset/kaggle.png" alt="Kaggle">
    <img src="https://storage.googleapis.com/public-arena-asset/mbzuai.jpeg" alt="MBZUAI">
    <img src="https://storage.googleapis.com/public-arena-asset/a16z.jpeg" alt="a16z">
    <img src="https://storage.googleapis.com/public-arena-asset/together.png" alt="Together AI">
    <img src="https://storage.googleapis.com/public-arena-asset/hyperbolic_logo.png" alt="Hyperbolic">
    <img src="https://storage.googleapis.com/public-arena-asset/anyscale.png" alt="AnyScale">
    <img src="https://storage.googleapis.com/public-arena-asset/huggingface.png" alt="HuggingFace">
</div>
"""

# JSON file format of API-based models:
# {
#   "gpt-3.5-turbo": {
#     "model_name": "gpt-3.5-turbo",
#     "api_type": "openai",
#     "api_base": "https://api.openai.com/v1",
#     "api_key": "sk-******",
#     "anony_only": false
#   }
# }
#
#  - "api_type" can be one of the following: openai, anthropic, gemini, or mistral. For custom APIs, add a new type and implement it accordingly.
#  - "anony_only" indicates whether to display this model in anonymous mode only.

api_endpoint_info = {}


class State:
    def __init__(self, model_name, is_vision=False):
        self.conv = get_conversation_template(model_name)
        self.conv_id = uuid.uuid4().hex
        self.skip_next = False
        self.model_name = model_name
        self.oai_thread_id = None
        self.is_vision = is_vision

        # NOTE(chris): This could be sort of a hack since it assumes the user only uploads one image. If they can upload multiple, we should store a list of image hashes.
        self.has_csam_image = False

        self.regen_support = True
        if "browsing" in model_name:
            self.regen_support = False
        self.init_system_prompt(self.conv)

    def init_system_prompt(self, conv):
        system_prompt = conv.get_system_message()
        if len(system_prompt) == 0:
            return
        current_date = datetime.datetime.now().strftime("%Y-%m-%d")
        system_prompt = system_prompt.replace("{{currentDateTime}}", current_date)
        conv.set_system_message(system_prompt)

    def to_gradio_chatbot(self):
        return self.conv.to_gradio_chatbot()

    def dict(self):
        base = self.conv.dict()
        base.update(
            {
                "conv_id": self.conv_id,
                "model_name": self.model_name,
            }
        )

        if self.is_vision:
            base.update({"has_csam_image": self.has_csam_image})
        return base


def set_global_vars(controller_url_, enable_moderation_, use_remote_storage_):
    global controller_url, enable_moderation, use_remote_storage
    controller_url = controller_url_
    enable_moderation = enable_moderation_
    use_remote_storage = use_remote_storage_


def get_conv_log_filename(is_vision=False, has_csam_image=False):
    t = datetime.datetime.now()
    conv_log_filename = f"{t.year}-{t.month:02d}-{t.day:02d}-conv.json"
    if is_vision and not has_csam_image:
        name = os.path.join(LOGDIR, f"vision-tmp-{conv_log_filename}")
    elif is_vision and has_csam_image:
        name = os.path.join(LOGDIR, f"vision-csam-{conv_log_filename}")
    else:
        name = os.path.join(LOGDIR, conv_log_filename)

    return name


def get_model_list(controller_url, register_api_endpoint_file, vision_arena):
    global api_endpoint_info

    # Add models from the controller
    if controller_url:
        ret = requests.post(controller_url + "/refresh_all_workers")
        assert ret.status_code == 200

        if vision_arena:
            ret = requests.post(controller_url + "/list_multimodal_models")
            models = ret.json()["models"]
        else:
            ret = requests.post(controller_url + "/list_language_models")
            models = ret.json()["models"]
    else:
        models = []

    # Add models from the API providers
    if register_api_endpoint_file:
        api_endpoint_info = json.load(open(register_api_endpoint_file))
        for mdl, mdl_dict in api_endpoint_info.items():
            mdl_vision = mdl_dict.get("vision-arena", False)
            mdl_text = mdl_dict.get("text-arena", True)
            if vision_arena and mdl_vision:
                models.append(mdl)
            if not vision_arena and mdl_text:
                models.append(mdl)

    # Remove anonymous models
    models = list(set(models))
    visible_models = models.copy()
    for mdl in models:
        if mdl not in api_endpoint_info:
            continue
        mdl_dict = api_endpoint_info[mdl]
        if mdl_dict["anony_only"]:
            visible_models.remove(mdl)

    # Sort models and add descriptions
    priority = {k: f"___{i:03d}" for i, k in enumerate(model_info)}
    models.sort(key=lambda x: priority.get(x, x))
    visible_models.sort(key=lambda x: priority.get(x, x))
    logger.info(f"All models: {models}")
    logger.info(f"Visible models: {visible_models}")
    return visible_models, models


def load_demo_single(models, url_params):
    selected_model = models[0] if len(models) > 0 else ""
    if "model" in url_params:
        model = url_params["model"]
        if model in models:
            selected_model = model

    dropdown_update = gr.Dropdown(choices=models, value=selected_model, visible=True)
    state = None
    return state, dropdown_update


def load_demo(url_params, request: gr.Request):
    global models

    ip = get_ip(request)
    logger.info(f"load_demo. ip: {ip}. params: {url_params}")

    if args.model_list_mode == "reload":
        models, all_models = get_model_list(
            controller_url, args.register_api_endpoint_file, vision_arena=False
        )

    return load_demo_single(models, url_params)


def vote_last_response(state, vote_type, model_selector, request: gr.Request):
    filename = get_conv_log_filename()
    if "llava" in model_selector:
        filename = filename.replace("2024", "vision-tmp-2024")

    with open(filename, "a") as fout:
        data = {
            "tstamp": round(time.time(), 4),
            "type": vote_type,
            "model": model_selector,
            "state": state.dict(),
            "ip": get_ip(request),
        }
        fout.write(json.dumps(data) + "\n")
    get_remote_logger().log(data)


def upvote_last_response(state, model_selector, request: gr.Request):
    ip = get_ip(request)
    logger.info(f"upvote. ip: {ip}")
    vote_last_response(state, "upvote", model_selector, request)
    return ("",) + (disable_btn,) * 3


def downvote_last_response(state, model_selector, request: gr.Request):
    ip = get_ip(request)
    logger.info(f"downvote. ip: {ip}")
    vote_last_response(state, "downvote", model_selector, request)
    return ("",) + (disable_btn,) * 3


def flag_last_response(state, model_selector, request: gr.Request):
    ip = get_ip(request)
    logger.info(f"flag. ip: {ip}")
    vote_last_response(state, "flag", model_selector, request)
    return ("",) + (disable_btn,) * 3


def regenerate(state, request: gr.Request):
    ip = get_ip(request)
    logger.info(f"regenerate. ip: {ip}")
    if not state.regen_support:
        state.skip_next = True
        return (state, state.to_gradio_chatbot(), "", None) + (no_change_btn,) * 5
    state.conv.update_last_message(None)
    return (state, state.to_gradio_chatbot(), "", None) + (disable_btn,) * 5


def clear_history(request: gr.Request):
    ip = get_ip(request)
    logger.info(f"clear_history. ip: {ip}")
    state = None
    return (state, [], "", None) + (disable_btn,) * 5


def get_ip(request: gr.Request):
    if "cf-connecting-ip" in request.headers:
        ip = request.headers["cf-connecting-ip"]
    elif "x-forwarded-for" in request.headers:
        ip = request.headers["x-forwarded-for"]
    else:
        ip = request.client.host
    return ip


# TODO(Chris): At some point, we would like this to be a live-reporting feature.
def report_csam_image(state, image):
    pass


def _prepare_text_with_image(state, text, images, csam_flag):
    if images is not None and len(images) > 0:
        image = images[0]

        if len(state.conv.get_images()) > 0:
            # reset convo with new image
            state.conv = get_conversation_template(state.model_name)

        image = state.conv.convert_image_to_base64(
            image
        )  # PIL type is not JSON serializable

        if csam_flag:
            state.has_csam_image = True
            report_csam_image(state, image)

        text = text, [image]

    return text


def add_text(state, model_selector, text, image, request: gr.Request):
    ip = get_ip(request)
    logger.info(f"add_text. ip: {ip}. len: {len(text)}")

    if state is None:
        state = State(model_selector)

    if len(text) <= 0:
        state.skip_next = True
        return (state, state.to_gradio_chatbot(), "", None) + (no_change_btn,) * 5

    all_conv_text = state.conv.get_prompt()
    all_conv_text = all_conv_text[-2000:] + "\nuser: " + text
    flagged = moderation_filter(all_conv_text, [state.model_name])
    # flagged = moderation_filter(text, [state.model_name])
    if flagged:
        logger.info(f"violate moderation. ip: {ip}. text: {text}")
        # overwrite the original text
        text = MODERATION_MSG

    if (len(state.conv.messages) - state.conv.offset) // 2 >= CONVERSATION_TURN_LIMIT:
        logger.info(f"conversation turn limit. ip: {ip}. text: {text}")
        state.skip_next = True
        return (state, state.to_gradio_chatbot(), CONVERSATION_LIMIT_MSG, None) + (
            no_change_btn,
        ) * 5

    text = text[:INPUT_CHAR_LEN_LIMIT]  # Hard cut-off
    text = _prepare_text_with_image(state, text, image, csam_flag=False)
    state.conv.append_message(state.conv.roles[0], text)
    state.conv.append_message(state.conv.roles[1], None)
    return (state, state.to_gradio_chatbot(), "", None) + (disable_btn,) * 5


def model_worker_stream_iter(
    conv,
    model_name,
    worker_addr,
    prompt,
    temperature,
    repetition_penalty,
    top_p,
    max_new_tokens,
    images,
):
    # Make requests
    gen_params = {
        "model": model_name,
        "prompt": prompt,
        "temperature": temperature,
        "repetition_penalty": repetition_penalty,
        "top_p": top_p,
        "max_new_tokens": max_new_tokens,
        "stop": conv.stop_str,
        "stop_token_ids": conv.stop_token_ids,
        "echo": False,
    }

    logger.info(f"==== request ====\n{gen_params}")

    if len(images) > 0:
        gen_params["images"] = images

    # Stream output
    response = requests.post(
        worker_addr + "/worker_generate_stream",
        headers=headers,
        json=gen_params,
        stream=True,
        timeout=WORKER_API_TIMEOUT,
    )
    for chunk in response.iter_lines(decode_unicode=False, delimiter=b"\0"):
        if chunk:
            data = json.loads(chunk.decode())
            yield data


def is_limit_reached(model_name, ip):
    monitor_url = "http://localhost:9090"
    try:
        ret = requests.get(
            f"{monitor_url}/is_limit_reached?model={model_name}&user_id={ip}", timeout=1
        )
        obj = ret.json()
        return obj
    except Exception as e:
        logger.info(f"monitor error: {e}")
        return None


def bot_response(
    state,
    temperature,
    top_p,
    max_new_tokens,
    request: gr.Request,
    apply_rate_limit=True,
    use_recommended_config=False,
):
    ip = get_ip(request)
    logger.info(f"bot_response. ip: {ip}")
    start_tstamp = time.time()
    temperature = float(temperature)
    top_p = float(top_p)
    max_new_tokens = int(max_new_tokens)

    if state.skip_next:
        # This generate call is skipped due to invalid inputs
        state.skip_next = False
        yield (state, state.to_gradio_chatbot()) + (no_change_btn,) * 5
        return

    if apply_rate_limit:
        ret = is_limit_reached(state.model_name, ip)
        if ret is not None and ret["is_limit_reached"]:
            error_msg = RATE_LIMIT_MSG + "\n\n" + ret["reason"]
            logger.info(f"rate limit reached. ip: {ip}. error_msg: {ret['reason']}")
            state.conv.update_last_message(error_msg)
            yield (state, state.to_gradio_chatbot()) + (no_change_btn,) * 5
            return

    conv, model_name = state.conv, state.model_name
    model_api_dict = (
        api_endpoint_info[model_name] if model_name in api_endpoint_info else None
    )
    images = conv.get_images()

    if model_api_dict is None:
        # Query worker address
        ret = requests.post(
            controller_url + "/get_worker_address", json={"model": model_name}
        )
        worker_addr = ret.json()["address"]
        logger.info(f"model_name: {model_name}, worker_addr: {worker_addr}")

        # No available worker
        if worker_addr == "":
            conv.update_last_message(SERVER_ERROR_MSG)
            yield (
                state,
                state.to_gradio_chatbot(),
                disable_btn,
                disable_btn,
                disable_btn,
                enable_btn,
                enable_btn,
            )
            return

        # Construct prompt.
        # We need to call it here, so it will not be affected by "β–Œ".
        prompt = conv.get_prompt()
        # Set repetition_penalty
        if "t5" in model_name:
            repetition_penalty = 1.2
        else:
            repetition_penalty = 1.0

        stream_iter = model_worker_stream_iter(
            conv,
            model_name,
            worker_addr,
            prompt,
            temperature,
            repetition_penalty,
            top_p,
            max_new_tokens,
            images,
        )
    else:
        if use_recommended_config:
            recommended_config = model_api_dict.get("recommended_config", None)
            if recommended_config is not None:
                temperature = recommended_config.get("temperature", temperature)
                top_p = recommended_config.get("top_p", top_p)
                max_new_tokens = recommended_config.get(
                    "max_new_tokens", max_new_tokens
                )

        stream_iter = get_api_provider_stream_iter(
            conv,
            model_name,
            model_api_dict,
            temperature,
            top_p,
            max_new_tokens,
            state,
        )

    html_code = ' <span class="cursor"></span> '

    # conv.update_last_message("β–Œ")
    conv.update_last_message(html_code)
    yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 5

    try:
        data = {"text": ""}
        for i, data in enumerate(stream_iter):
            if data["error_code"] == 0:
                output = data["text"].strip()
                # conv.update_last_message(output + "β–Œ")
                conv.update_last_message(output + html_code)
                yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 5
            else:
                output = data["text"] + f"\n\n(error_code: {data['error_code']})"
                conv.update_last_message(output)
                yield (state, state.to_gradio_chatbot()) + (
                    disable_btn,
                    disable_btn,
                    disable_btn,
                    enable_btn,
                    enable_btn,
                )
                return
        output = data["text"].strip()
        conv.update_last_message(output)
        yield (state, state.to_gradio_chatbot()) + (enable_btn,) * 5
    except requests.exceptions.RequestException as e:
        conv.update_last_message(
            f"{SERVER_ERROR_MSG}\n\n"
            f"(error_code: {ErrorCode.GRADIO_REQUEST_ERROR}, {e})"
        )
        yield (state, state.to_gradio_chatbot()) + (
            disable_btn,
            disable_btn,
            disable_btn,
            enable_btn,
            enable_btn,
        )
        return
    except Exception as e:
        conv.update_last_message(
            f"{SERVER_ERROR_MSG}\n\n"
            f"(error_code: {ErrorCode.GRADIO_STREAM_UNKNOWN_ERROR}, {e})"
        )
        yield (state, state.to_gradio_chatbot()) + (
            disable_btn,
            disable_btn,
            disable_btn,
            enable_btn,
            enable_btn,
        )
        return

    finish_tstamp = time.time()
    logger.info(f"{output}")

    conv.save_new_images(
        has_csam_images=state.has_csam_image, use_remote_storage=use_remote_storage
    )

    filename = get_conv_log_filename(
        is_vision=state.is_vision, has_csam_image=state.has_csam_image
    )

    with open(filename, "a") as fout:
        data = {
            "tstamp": round(finish_tstamp, 4),
            "type": "chat",
            "model": model_name,
            "gen_params": {
                "temperature": temperature,
                "top_p": top_p,
                "max_new_tokens": max_new_tokens,
            },
            "start": round(start_tstamp, 4),
            "finish": round(finish_tstamp, 4),
            "state": state.dict(),
            "ip": get_ip(request),
        }
        fout.write(json.dumps(data) + "\n")
    get_remote_logger().log(data)


block_css = """
#notice_markdown .prose {
    font-size: 110% !important;
}
#notice_markdown th {
    display: none;
}
#notice_markdown td {
    padding-top: 6px;
    padding-bottom: 6px;
}
#arena_leaderboard_dataframe table {
    font-size: 110%;
}
#full_leaderboard_dataframe table {
    font-size: 110%;
}
#model_description_markdown {
    font-size: 110% !important;
}
#leaderboard_markdown .prose {
    font-size: 110% !important;
}
#leaderboard_markdown td {
    padding-top: 6px;
    padding-bottom: 6px;
}
#leaderboard_dataframe td {
    line-height: 0.1em;
}
#about_markdown .prose {
    font-size: 110% !important;
}
#ack_markdown .prose {
    font-size: 110% !important;
}
#chatbot .prose {
    font-size: 105% !important;
}
.sponsor-image-about img {
    margin: 0 20px;
    margin-top: 20px;
    height: 40px;
    max-height: 100%;
    width: auto;
    float: left;
}

.chatbot h1, h2, h3 {
    margin-top: 8px; /* Adjust the value as needed */
    margin-bottom: 0px; /* Adjust the value as needed */
    padding-bottom: 0px;
}

.chatbot h1 {
    font-size: 130%;
}
.chatbot h2 {
    font-size: 120%;
}
.chatbot h3 {
    font-size: 110%;
}
.chatbot p:not(:first-child) {
    margin-top: 8px;
}

.typing {
    display: inline-block;
}

.cursor {
    display: inline-block;
    width: 7px;
    height: 1em;
    background-color: black;
    vertical-align: middle;
    animation: blink 1s infinite;
}

.dark .cursor {
    display: inline-block;
    width: 7px;
    height: 1em;
    background-color: white;
    vertical-align: middle;
    animation: blink 1s infinite;
}

@keyframes blink {
    0%, 50% { opacity: 1; }
    50.1%, 100% { opacity: 0; }
}

.app {
  max-width: 100% !important;
  padding: 20px !important;               
}

a {
    color: #1976D2; /* Your current link color, a shade of blue */
    text-decoration: none; /* Removes underline from links */
}
a:hover {
    color: #63A4FF; /* This can be any color you choose for hover */
    text-decoration: underline; /* Adds underline on hover */
}
"""


def get_model_description_md(models):
    model_description_md = """
| | | |
| ---- | ---- | ---- |
"""
    ct = 0
    visited = set()
    for i, name in enumerate(models):
        minfo = get_model_info(name)
        if minfo.simple_name in visited:
            continue
        visited.add(minfo.simple_name)
        one_model_md = f"[{minfo.simple_name}]({minfo.link}): {minfo.description}"

        if ct % 3 == 0:
            model_description_md += "|"
        model_description_md += f" {one_model_md} |"
        if ct % 3 == 2:
            model_description_md += "\n"
        ct += 1
    return model_description_md


def build_about():
    about_markdown = """
# About Us
Chatbot Arena is an open-source research project developed by members from [LMSYS](https://lmsys.org) and UC Berkeley [SkyLab](https://sky.cs.berkeley.edu/). Our mission is to build an open platform to evaluate LLMs by human preference in the real-world.
We open-source our [FastChat](https://github.com/lm-sys/FastChat) project at GitHub and release chat and human feedback dataset. We invite everyone to join us!

## Arena Core Team
- [Lianmin Zheng](https://lmzheng.net/) (co-lead), [Wei-Lin Chiang](https://infwinston.github.io/) (co-lead), [Ying Sheng](https://sites.google.com/view/yingsheng/home), [Joseph E. Gonzalez](https://people.eecs.berkeley.edu/~jegonzal/), [Ion Stoica](http://people.eecs.berkeley.edu/~istoica/)

## Past Members
- [Siyuan Zhuang](https://scholar.google.com/citations?user=KSZmI5EAAAAJ), [Hao Zhang](https://cseweb.ucsd.edu/~haozhang/)

## Learn more
- Chatbot Arena [paper](https://arxiv.org/abs/2403.04132), [launch blog](https://lmsys.org/blog/2023-05-03-arena/), [dataset](https://github.com/lm-sys/FastChat/blob/main/docs/dataset_release.md), [policy](https://lmsys.org/blog/2024-03-01-policy/)
- LMSYS-Chat-1M dataset [paper](https://arxiv.org/abs/2309.11998), LLM Judge [paper](https://arxiv.org/abs/2306.05685)

## Contact Us
- Follow our [X](https://x.com/lmsysorg), [Discord](https://discord.gg/HSWAKCrnFx) or email us at [email protected]
- File issues on [GitHub](https://github.com/lm-sys/FastChat)
- Download our datasets and models on [HuggingFace](https://huggingface.co/lmsys)

## Acknowledgment
We thank [SkyPilot](https://github.com/skypilot-org/skypilot) and [Gradio](https://github.com/gradio-app/gradio) team for their system support.
We also thank [UC Berkeley SkyLab](https://sky.cs.berkeley.edu/), [Kaggle](https://www.kaggle.com/), [MBZUAI](https://mbzuai.ac.ae/), [a16z](https://www.a16z.com/), [Together AI](https://www.together.ai/), [Hyperbolic](https://hyperbolic.xyz/), [Anyscale](https://www.anyscale.com/), [HuggingFace](https://huggingface.co/) for their generous sponsorship. Learn more about partnership [here](https://lmsys.org/donations/).

<div class="sponsor-image-about">
    <img src="https://storage.googleapis.com/public-arena-asset/skylab.png" alt="SkyLab">
    <img src="https://storage.googleapis.com/public-arena-asset/kaggle.png" alt="Kaggle">
    <img src="https://storage.googleapis.com/public-arena-asset/mbzuai.jpeg" alt="MBZUAI">
    <img src="https://storage.googleapis.com/public-arena-asset/a16z.jpeg" alt="a16z">
    <img src="https://storage.googleapis.com/public-arena-asset/together.png" alt="Together AI">
    <img src="https://storage.googleapis.com/public-arena-asset/hyperbolic_logo.png" alt="Hyperbolic">
    <img src="https://storage.googleapis.com/public-arena-asset/anyscale.png" alt="AnyScale">
    <img src="https://storage.googleapis.com/public-arena-asset/huggingface.png" alt="HuggingFace">
</div>
"""
    gr.Markdown(about_markdown, elem_id="about_markdown")


def build_single_model_ui(models, add_promotion_links=False):
    promotion = (
        """
- | [GitHub](https://github.com/lm-sys/FastChat) | [Dataset](https://github.com/lm-sys/FastChat/blob/main/docs/dataset_release.md) | [Twitter](https://twitter.com/lmsysorg) | [Discord](https://discord.gg/HSWAKCrnFx) |
- Introducing Llama 2: The Next Generation Open Source Large Language Model. [[Website]](https://ai.meta.com/llama/)
- Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90% ChatGPT Quality. [[Blog]](https://lmsys.org/blog/2023-03-30-vicuna/)

## πŸ€– Choose any model to chat
"""
        if add_promotion_links
        else ""
    )

    notice_markdown = f"""
# πŸ”οΈ Chat with Open Large Language Models
{promotion}
"""

    state = gr.State()
    gr.Markdown(notice_markdown, elem_id="notice_markdown")

    with gr.Group(elem_id="share-region-named"):
        with gr.Row(elem_id="model_selector_row"):
            model_selector = gr.Dropdown(
                choices=models,
                value=models[0] if len(models) > 0 else "",
                interactive=True,
                show_label=False,
                container=False,
            )
        with gr.Row():
            with gr.Accordion(
                f"πŸ” Expand to see the descriptions of {len(models)} models",
                open=False,
            ):
                model_description_md = get_model_description_md(models)
                gr.Markdown(model_description_md, elem_id="model_description_markdown")

        chatbot = gr.Chatbot(
            elem_id="chatbot",
            label="Scroll down and start chatting",
            height=550,
            show_copy_button=True,
        )
    with gr.Row():
        textbox = gr.Textbox(
            show_label=False,
            placeholder="πŸ‘‰ Enter your prompt and press ENTER",
            elem_id="input_box",
        )
        send_btn = gr.Button(value="Send", variant="primary", scale=0)

    with gr.Row() as button_row:
        upvote_btn = gr.Button(value="πŸ‘  Upvote", interactive=False)
        downvote_btn = gr.Button(value="πŸ‘Ž  Downvote", interactive=False)
        flag_btn = gr.Button(value="⚠️  Flag", interactive=False)
        regenerate_btn = gr.Button(value="πŸ”„  Regenerate", interactive=False)
        clear_btn = gr.Button(value="πŸ—‘οΈ  Clear history", interactive=False)

    with gr.Accordion("Parameters", open=False) as parameter_row:
        temperature = gr.Slider(
            minimum=0.0,
            maximum=1.0,
            value=0.7,
            step=0.1,
            interactive=True,
            label="Temperature",
        )
        top_p = gr.Slider(
            minimum=0.0,
            maximum=1.0,
            value=1.0,
            step=0.1,
            interactive=True,
            label="Top P",
        )
        max_output_tokens = gr.Slider(
            minimum=16,
            maximum=2048,
            value=1024,
            step=64,
            interactive=True,
            label="Max output tokens",
        )

    if add_promotion_links:
        gr.Markdown(acknowledgment_md, elem_id="ack_markdown")

    # Register listeners
    imagebox = gr.State(None)
    btn_list = [upvote_btn, downvote_btn, flag_btn, regenerate_btn, clear_btn]
    upvote_btn.click(
        upvote_last_response,
        [state, model_selector],
        [textbox, upvote_btn, downvote_btn, flag_btn],
    )
    downvote_btn.click(
        downvote_last_response,
        [state, model_selector],
        [textbox, upvote_btn, downvote_btn, flag_btn],
    )
    flag_btn.click(
        flag_last_response,
        [state, model_selector],
        [textbox, upvote_btn, downvote_btn, flag_btn],
    )
    regenerate_btn.click(
        regenerate, state, [state, chatbot, textbox, imagebox] + btn_list
    ).then(
        bot_response,
        [state, temperature, top_p, max_output_tokens],
        [state, chatbot] + btn_list,
    )
    clear_btn.click(clear_history, None, [state, chatbot, textbox, imagebox] + btn_list)

    model_selector.change(
        clear_history, None, [state, chatbot, textbox, imagebox] + btn_list
    )

    textbox.submit(
        add_text,
        [state, model_selector, textbox, imagebox],
        [state, chatbot, textbox, imagebox] + btn_list,
    ).then(
        bot_response,
        [state, temperature, top_p, max_output_tokens],
        [state, chatbot] + btn_list,
    )
    send_btn.click(
        add_text,
        [state, model_selector, textbox, imagebox],
        [state, chatbot, textbox, imagebox] + btn_list,
    ).then(
        bot_response,
        [state, temperature, top_p, max_output_tokens],
        [state, chatbot] + btn_list,
    )

    return [state, model_selector]


def build_demo(models):
    with gr.Blocks(
        title="Chat with Open Large Language Models",
        theme=gr.themes.Default(),
        css=block_css,
    ) as demo:
        url_params = gr.JSON(visible=False)

        state, model_selector = build_single_model_ui(models)

        if args.model_list_mode not in ["once", "reload"]:
            raise ValueError(f"Unknown model list mode: {args.model_list_mode}")

        if args.show_terms_of_use:
            load_js = get_window_url_params_with_tos_js
        else:
            load_js = get_window_url_params_js

        demo.load(
            load_demo,
            [url_params],
            [
                state,
                model_selector,
            ],
            js=load_js,
        )

    return demo


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--host", type=str, default="0.0.0.0")
    parser.add_argument("--port", type=int)
    parser.add_argument(
        "--share",
        action="store_true",
        help="Whether to generate a public, shareable link",
    )
    parser.add_argument(
        "--controller-url",
        type=str,
        default="http://localhost:21001",
        help="The address of the controller",
    )
    parser.add_argument(
        "--concurrency-count",
        type=int,
        default=10,
        help="The concurrency count of the gradio queue",
    )
    parser.add_argument(
        "--model-list-mode",
        type=str,
        default="once",
        choices=["once", "reload"],
        help="Whether to load the model list once or reload the model list every time",
    )
    parser.add_argument(
        "--moderate",
        action="store_true",
        help="Enable content moderation to block unsafe inputs",
    )
    parser.add_argument(
        "--show-terms-of-use",
        action="store_true",
        help="Shows term of use before loading the demo",
    )
    parser.add_argument(
        "--register-api-endpoint-file",
        type=str,
        help="Register API-based model endpoints from a JSON file",
    )
    parser.add_argument(
        "--gradio-auth-path",
        type=str,
        help='Set the gradio authentication file path. The file should contain one or more user:password pairs in this format: "u1:p1,u2:p2,u3:p3"',
    )
    parser.add_argument(
        "--gradio-root-path",
        type=str,
        help="Sets the gradio root path, eg /abc/def. Useful when running behind a reverse-proxy or at a custom URL path prefix",
    )
    parser.add_argument(
        "--use-remote-storage",
        action="store_true",
        default=False,
        help="Uploads image files to google cloud storage if set to true",
    )
    args = parser.parse_args()
    logger.info(f"args: {args}")

    # Set global variables
    set_global_vars(args.controller_url, args.moderate, args.use_remote_storage)
    models, all_models = get_model_list(
        args.controller_url, args.register_api_endpoint_file, vision_arena=False
    )

    # Set authorization credentials
    auth = None
    if args.gradio_auth_path is not None:
        auth = parse_gradio_auth_creds(args.gradio_auth_path)

    # Launch the demo
    demo = build_demo(models)
    demo.queue(
        default_concurrency_limit=args.concurrency_count,
        status_update_rate=10,
        api_open=False,
    ).launch(
        server_name=args.host,
        server_port=args.port,
        share=args.share,
        max_threads=200,
        auth=auth,
        root_path=args.gradio_root_path,
    )