FIRE / src /serve /inference.py
zhangbofei
fix: src
2238fe2
raw
history blame
18.8 kB
"""Inference for FastChat models."""
import abc
import gc
import json
import math
import os
import sys
import time
from typing import Iterable, Optional, Dict
import warnings
import psutil
import torch
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
LlamaTokenizer,
LlamaForCausalLM,
AutoModel,
AutoModelForSeq2SeqLM,
T5Tokenizer,
AutoConfig,
)
from transformers.generation.logits_process import (
LogitsProcessorList,
RepetitionPenaltyLogitsProcessor,
TemperatureLogitsWarper,
TopKLogitsWarper,
TopPLogitsWarper,
)
from src.conversation import get_conv_template, SeparatorStyle
from src.model.model_adapter import (
load_model,
get_conversation_template,
get_generate_stream_function,
)
from src.modules.awq import AWQConfig
from src.modules.gptq import GptqConfig
from src.modules.exllama import ExllamaConfig
from src.modules.xfastertransformer import XftConfig
from src.utils import is_partial_stop, is_sentence_complete, get_context_length
def prepare_logits_processor(
temperature: float, repetition_penalty: float, top_p: float, top_k: int
) -> LogitsProcessorList:
processor_list = LogitsProcessorList()
# TemperatureLogitsWarper doesn't accept 0.0, 1.0 makes it a no-op so we skip two cases.
if temperature >= 1e-5 and temperature != 1.0:
processor_list.append(TemperatureLogitsWarper(temperature))
if repetition_penalty > 1.0:
processor_list.append(RepetitionPenaltyLogitsProcessor(repetition_penalty))
if 1e-8 <= top_p < 1.0:
processor_list.append(TopPLogitsWarper(top_p))
if top_k > 0:
processor_list.append(TopKLogitsWarper(top_k))
return processor_list
@torch.inference_mode()
def generate_stream(
model,
tokenizer,
params: Dict,
device: str,
context_len: int,
stream_interval: int = 2,
judge_sent_end: bool = False,
):
if hasattr(model, "device"):
device = model.device
# Read parameters
prompt = params["prompt"]
len_prompt = len(prompt)
temperature = float(params.get("temperature", 1.0))
repetition_penalty = float(params.get("repetition_penalty", 1.0))
top_p = float(params.get("top_p", 1.0))
top_k = int(params.get("top_k", -1)) # -1 means disable
max_new_tokens = int(params.get("max_new_tokens", 256))
logprobs = params.get("logprobs", None) # FIXME: Support logprobs>1.
echo = bool(params.get("echo", True))
stop_str = params.get("stop", None)
stop_token_ids = params.get("stop_token_ids", None) or []
if tokenizer.eos_token_id not in stop_token_ids:
stop_token_ids.append(tokenizer.eos_token_id)
logits_processor = prepare_logits_processor(
temperature, repetition_penalty, top_p, top_k
)
input_ids = tokenizer(prompt).input_ids
if model.config.is_encoder_decoder:
max_src_len = context_len
else: # truncate
max_src_len = context_len - max_new_tokens - 1
input_ids = input_ids[-max_src_len:]
output_ids = list(input_ids)
input_echo_len = len(input_ids)
if model.config.is_encoder_decoder:
if logprobs is not None: # FIXME: Support logprobs for encoder-decoder models.
raise NotImplementedError
encoder_output = model.encoder(
input_ids=torch.as_tensor([input_ids], device=device)
)[0]
start_ids = torch.as_tensor(
[[model.generation_config.decoder_start_token_id]],
dtype=torch.int64,
device=device,
)
else:
start_ids = torch.as_tensor([input_ids], device=device)
past_key_values = out = None
token_logprobs = [None] # The first token has no logprobs.
sent_interrupt = False
finish_reason = None
stopped = False
for i in range(max_new_tokens):
if i == 0: # prefill
if model.config.is_encoder_decoder:
out = model.decoder(
input_ids=start_ids,
encoder_hidden_states=encoder_output,
use_cache=True,
)
logits = model.lm_head(out[0])
else:
out = model(input_ids=start_ids, use_cache=True)
logits = out.logits
past_key_values = out.past_key_values
if logprobs is not None:
# Prefull logprobs for the prompt.
shift_input_ids = start_ids[..., 1:].contiguous()
shift_logits = logits[..., :-1, :].contiguous()
shift_logits = torch.log_softmax(shift_logits, dim=-1).tolist()
for label_id, logit in zip(
shift_input_ids[0].tolist(), shift_logits[0]
):
token_logprobs.append(logit[label_id])
else: # decoding
if model.config.is_encoder_decoder:
out = model.decoder(
input_ids=torch.as_tensor(
[[token] if not sent_interrupt else output_ids],
device=device,
),
encoder_hidden_states=encoder_output,
use_cache=True,
past_key_values=past_key_values if not sent_interrupt else None,
)
sent_interrupt = False
logits = model.lm_head(out[0])
else:
out = model(
input_ids=torch.as_tensor(
[[token] if not sent_interrupt else output_ids],
device=device,
),
use_cache=True,
past_key_values=past_key_values if not sent_interrupt else None,
)
sent_interrupt = False
logits = out.logits
past_key_values = out.past_key_values
if logits_processor:
if repetition_penalty > 1.0:
tmp_output_ids = torch.as_tensor([output_ids], device=logits.device)
else:
tmp_output_ids = None
last_token_logits = logits_processor(tmp_output_ids, logits[:, -1, :])[0]
else:
last_token_logits = logits[0, -1, :]
if device == "mps":
# Switch to CPU by avoiding some bugs in mps backend.
last_token_logits = last_token_logits.float().to("cpu")
if temperature < 1e-5 or top_p < 1e-8: # greedy
_, indices = torch.topk(last_token_logits, 2)
tokens = [int(index) for index in indices.tolist()]
else:
probs = torch.softmax(last_token_logits, dim=-1)
indices = torch.multinomial(probs, num_samples=2)
tokens = [int(token) for token in indices.tolist()]
token = tokens[0]
output_ids.append(token)
if logprobs is not None:
# Cannot use last_token_logits because logprobs is based on raw logits.
token_logprobs.append(
torch.log_softmax(logits[0, -1, :], dim=-1)[token].tolist()
)
if token in stop_token_ids:
stopped = True
else:
stopped = False
# Yield the output tokens
if i % stream_interval == 0 or i == max_new_tokens - 1 or stopped:
if echo:
tmp_output_ids = output_ids
rfind_start = len_prompt
else:
tmp_output_ids = output_ids[input_echo_len:]
rfind_start = 0
output = tokenizer.decode(
tmp_output_ids,
skip_special_tokens=True,
spaces_between_special_tokens=False,
clean_up_tokenization_spaces=True,
)
ret_logprobs = None
if logprobs is not None:
ret_logprobs = {
"text_offset": [],
"tokens": [
tokenizer.decode(token)
for token in (
output_ids if echo else output_ids[input_echo_len:]
)
],
"token_logprobs": token_logprobs
if echo
else token_logprobs[input_echo_len:],
"top_logprobs": [{}]
* len(token_logprobs if echo else token_logprobs[input_echo_len:]),
}
# Compute text_offset
curr_pos = 0
for text in ret_logprobs["tokens"]:
ret_logprobs["text_offset"].append(curr_pos)
curr_pos += len(text)
# TODO: For the issue of incomplete sentences interrupting output, apply a patch and others can also modify it to a more elegant way
if judge_sent_end and stopped and not is_sentence_complete(output):
if len(tokens) > 1:
token = tokens[1]
output_ids[-1] = token
else:
output_ids.pop()
stopped = False
sent_interrupt = True
partially_stopped = False
if stop_str:
if isinstance(stop_str, str):
pos = output.rfind(stop_str, rfind_start)
if pos != -1:
output = output[:pos]
stopped = True
else:
partially_stopped = is_partial_stop(output, stop_str)
elif isinstance(stop_str, Iterable):
for each_stop in stop_str:
pos = output.rfind(each_stop, rfind_start)
if pos != -1:
output = output[:pos]
stopped = True
break
else:
partially_stopped = is_partial_stop(output, each_stop)
if partially_stopped:
break
else:
raise ValueError("Invalid stop field type.")
# Prevent yielding partial stop sequence
if not partially_stopped:
yield {
"text": output,
"logprobs": ret_logprobs,
"usage": {
"prompt_tokens": input_echo_len,
"completion_tokens": i,
"total_tokens": input_echo_len + i,
},
"finish_reason": None,
}
if stopped:
break
# Finish stream event, which contains finish reason
else:
finish_reason = "length"
if stopped:
finish_reason = "stop"
yield {
"text": output,
"logprobs": ret_logprobs,
"usage": {
"prompt_tokens": input_echo_len,
"completion_tokens": i,
"total_tokens": input_echo_len + i,
},
"finish_reason": finish_reason,
}
# Clean
del past_key_values, out
gc.collect()
torch.cuda.empty_cache()
if device == "xpu":
torch.xpu.empty_cache()
if device == "npu":
torch.npu.empty_cache()
class ChatIO(abc.ABC):
@abc.abstractmethod
def prompt_for_input(self, role: str) -> str:
"""Prompt for input from a role."""
@abc.abstractmethod
def prompt_for_output(self, role: str):
"""Prompt for output from a role."""
@abc.abstractmethod
def stream_output(self, output_stream):
"""Stream output."""
@abc.abstractmethod
def print_output(self, text: str):
"""Print output."""
def chat_loop(
model_path: str,
device: str,
num_gpus: int,
max_gpu_memory: str,
dtype: Optional[torch.dtype],
load_8bit: bool,
cpu_offloading: bool,
conv_template: Optional[str],
conv_system_msg: Optional[str],
temperature: float,
repetition_penalty: float,
max_new_tokens: int,
chatio: ChatIO,
gptq_config: Optional[GptqConfig] = None,
awq_config: Optional[AWQConfig] = None,
exllama_config: Optional[ExllamaConfig] = None,
xft_config: Optional[XftConfig] = None,
revision: str = "main",
judge_sent_end: bool = True,
debug: bool = True,
history: bool = True,
):
# Model
model, tokenizer = load_model(
model_path,
device=device,
num_gpus=num_gpus,
max_gpu_memory=max_gpu_memory,
dtype=dtype,
load_8bit=load_8bit,
cpu_offloading=cpu_offloading,
gptq_config=gptq_config,
awq_config=awq_config,
exllama_config=exllama_config,
xft_config=xft_config,
revision=revision,
debug=debug,
)
generate_stream_func = get_generate_stream_function(model, model_path)
model_type = str(type(model)).lower()
is_t5 = "t5" in model_type
is_codet5p = "codet5p" in model_type
is_xft = "xft" in model_type
# Hardcode T5's default repetition penalty to be 1.2
if is_t5 and repetition_penalty == 1.0:
repetition_penalty = 1.2
# Set context length
context_len = get_context_length(model.config)
# Chat
def new_chat():
if conv_template:
conv = get_conv_template(conv_template)
else:
conv = get_conversation_template(model_path)
if conv_system_msg is not None:
conv.set_system_message(conv_system_msg)
return conv
def reload_conv(conv):
"""
Reprints the conversation from the start.
"""
for message in conv.messages[conv.offset :]:
chatio.prompt_for_output(message[0])
chatio.print_output(message[1])
conv = None
while True:
if not history or not conv:
conv = new_chat()
try:
inp = chatio.prompt_for_input(conv.roles[0])
except EOFError:
inp = ""
if inp == "!!exit" or not inp:
print("exit...")
break
elif inp == "!!reset":
print("resetting...")
conv = new_chat()
continue
elif inp == "!!remove":
print("removing last message...")
if len(conv.messages) > conv.offset:
# Assistant
if conv.messages[-1][0] == conv.roles[1]:
conv.messages.pop()
# User
if conv.messages[-1][0] == conv.roles[0]:
conv.messages.pop()
reload_conv(conv)
else:
print("No messages to remove.")
continue
elif inp == "!!regen":
print("regenerating last message...")
if len(conv.messages) > conv.offset:
# Assistant
if conv.messages[-1][0] == conv.roles[1]:
conv.messages.pop()
# User
if conv.messages[-1][0] == conv.roles[0]:
reload_conv(conv)
# Set inp to previous message
inp = conv.messages.pop()[1]
else:
# Shouldn't happen in normal circumstances
print("No user message to regenerate from.")
continue
else:
print("No messages to regenerate.")
continue
elif inp.startswith("!!save"):
args = inp.split(" ", 1)
if len(args) != 2:
print("usage: !!save <filename>")
continue
else:
filename = args[1]
# Add .json if extension not present
if not "." in filename:
filename += ".json"
print("saving...", filename)
with open(filename, "w") as outfile:
json.dump(conv.dict(), outfile)
continue
elif inp.startswith("!!load"):
args = inp.split(" ", 1)
if len(args) != 2:
print("usage: !!load <filename>")
continue
else:
filename = args[1]
# Check if file exists and add .json if needed
if not os.path.exists(filename):
if (not filename.endswith(".json")) and os.path.exists(
filename + ".json"
):
filename += ".json"
else:
print("file not found:", filename)
continue
print("loading...", filename)
with open(filename, "r") as infile:
new_conv = json.load(infile)
conv = get_conv_template(new_conv["template_name"])
conv.set_system_message(new_conv["system_message"])
conv.messages = new_conv["messages"]
reload_conv(conv)
continue
conv.append_message(conv.roles[0], inp)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
if is_codet5p: # codet5p is a code completion model.
prompt = inp
gen_params = {
"model": model_path,
"prompt": prompt,
"temperature": temperature,
"repetition_penalty": repetition_penalty,
"max_new_tokens": max_new_tokens,
"stop": conv.stop_str,
"stop_token_ids": conv.stop_token_ids,
"echo": False,
}
try:
chatio.prompt_for_output(conv.roles[1])
output_stream = generate_stream_func(
model,
tokenizer,
gen_params,
device,
context_len=context_len,
judge_sent_end=judge_sent_end,
)
t = time.time()
outputs = chatio.stream_output(output_stream)
duration = time.time() - t
conv.update_last_message(outputs.strip())
if debug:
num_tokens = len(tokenizer.encode(outputs))
msg = {
"conv_template": conv.name,
"prompt": prompt,
"outputs": outputs,
"speed (token/s)": round(num_tokens / duration, 2),
}
print(f"\n{msg}\n")
except KeyboardInterrupt:
print("stopped generation.")
# If generation didn't finish
if conv.messages[-1][1] is None:
conv.messages.pop()
# Remove last user message, so there isn't a double up
if conv.messages[-1][0] == conv.roles[0]:
conv.messages.pop()
reload_conv(conv)