|
""" |
|
Multimodal Chatbot Arena (side-by-side) tab. |
|
Users chat with two chosen models. |
|
""" |
|
|
|
import json |
|
import os |
|
import time |
|
|
|
import gradio as gr |
|
import numpy as np |
|
|
|
from src.constants import ( |
|
TEXT_MODERATION_MSG, |
|
IMAGE_MODERATION_MSG, |
|
MODERATION_MSG, |
|
CONVERSATION_LIMIT_MSG, |
|
SLOW_MODEL_MSG, |
|
INPUT_CHAR_LEN_LIMIT, |
|
CONVERSATION_TURN_LIMIT, |
|
) |
|
from src.model.model_adapter import get_conversation_template |
|
from src.serve.gradio_block_arena_named import ( |
|
flash_buttons, |
|
share_click, |
|
bot_response_multi, |
|
) |
|
from src.serve.gradio_block_arena_vision import ( |
|
get_vqa_sample, |
|
set_invisible_image, |
|
set_visible_image, |
|
add_image, |
|
moderate_input, |
|
) |
|
from src.serve.gradio_web_server import ( |
|
State, |
|
bot_response, |
|
get_conv_log_filename, |
|
no_change_btn, |
|
enable_btn, |
|
disable_btn, |
|
invisible_btn, |
|
acknowledgment_md, |
|
get_ip, |
|
get_model_description_md, |
|
_prepare_text_with_image, |
|
) |
|
from src.serve.remote_logger import get_remote_logger |
|
from src.utils import ( |
|
build_logger, |
|
moderation_filter, |
|
image_moderation_filter, |
|
) |
|
|
|
|
|
logger = build_logger("gradio_web_server_multi", "gradio_web_server_multi.log") |
|
|
|
num_sides = 2 |
|
enable_moderation = False |
|
|
|
|
|
def clear_history_example(request: gr.Request): |
|
logger.info(f"clear_history_example (named). ip: {get_ip(request)}") |
|
return ( |
|
[None] * num_sides |
|
+ [None] * num_sides |
|
+ [invisible_btn] * 4 |
|
+ [disable_btn] * 2 |
|
) |
|
|
|
|
|
def vote_last_response(states, vote_type, model_selectors, request: gr.Request): |
|
filename = get_conv_log_filename(states[0].is_vision, states[0].has_csam_image) |
|
with open(filename, "a") as fout: |
|
data = { |
|
"tstamp": round(time.time(), 4), |
|
"type": vote_type, |
|
"models": [x for x in model_selectors], |
|
"states": [x.dict() for x in states], |
|
"ip": get_ip(request), |
|
} |
|
fout.write(json.dumps(data) + "\n") |
|
get_remote_logger().log(data) |
|
|
|
|
|
def leftvote_last_response( |
|
state0, state1, model_selector0, model_selector1, request: gr.Request |
|
): |
|
logger.info(f"leftvote (named). ip: {get_ip(request)}") |
|
vote_last_response( |
|
[state0, state1], "leftvote", [model_selector0, model_selector1], request |
|
) |
|
return (None,) + (disable_btn,) * 4 |
|
|
|
|
|
def rightvote_last_response( |
|
state0, state1, model_selector0, model_selector1, request: gr.Request |
|
): |
|
logger.info(f"rightvote (named). ip: {get_ip(request)}") |
|
vote_last_response( |
|
[state0, state1], "rightvote", [model_selector0, model_selector1], request |
|
) |
|
return (None,) + (disable_btn,) * 4 |
|
|
|
|
|
def tievote_last_response( |
|
state0, state1, model_selector0, model_selector1, request: gr.Request |
|
): |
|
logger.info(f"tievote (named). ip: {get_ip(request)}") |
|
vote_last_response( |
|
[state0, state1], "tievote", [model_selector0, model_selector1], request |
|
) |
|
return (None,) + (disable_btn,) * 4 |
|
|
|
|
|
def bothbad_vote_last_response( |
|
state0, state1, model_selector0, model_selector1, request: gr.Request |
|
): |
|
logger.info(f"bothbad_vote (named). ip: {get_ip(request)}") |
|
vote_last_response( |
|
[state0, state1], "bothbad_vote", [model_selector0, model_selector1], request |
|
) |
|
return (None,) + (disable_btn,) * 4 |
|
|
|
|
|
def regenerate(state0, state1, request: gr.Request): |
|
logger.info(f"regenerate (named). ip: {get_ip(request)}") |
|
states = [state0, state1] |
|
if state0.regen_support and state1.regen_support: |
|
for i in range(num_sides): |
|
states[i].conv.update_last_message(None) |
|
return ( |
|
states |
|
+ [x.to_gradio_chatbot() for x in states] |
|
+ [None] |
|
+ [disable_btn] * 6 |
|
) |
|
states[0].skip_next = True |
|
states[1].skip_next = True |
|
return ( |
|
states + [x.to_gradio_chatbot() for x in states] + [None] + [no_change_btn] * 6 |
|
) |
|
|
|
|
|
def clear_history(request: gr.Request): |
|
logger.info(f"clear_history (named). ip: {get_ip(request)}") |
|
return ( |
|
[None] * num_sides |
|
+ [None] * num_sides |
|
+ [None] |
|
+ [invisible_btn] * 4 |
|
+ [disable_btn] * 2 |
|
) |
|
|
|
|
|
def add_text( |
|
state0, state1, model_selector0, model_selector1, chat_input, request: gr.Request |
|
): |
|
text, images = chat_input["text"], chat_input["files"] |
|
ip = get_ip(request) |
|
logger.info(f"add_text (named). ip: {ip}. len: {len(text)}") |
|
states = [state0, state1] |
|
model_selectors = [model_selector0, model_selector1] |
|
|
|
|
|
for i in range(num_sides): |
|
if states[i] is None: |
|
states[i] = State(model_selectors[i], is_vision=True) |
|
|
|
if len(text) <= 0: |
|
for i in range(num_sides): |
|
states[i].skip_next = True |
|
return ( |
|
states |
|
+ [x.to_gradio_chatbot() for x in states] |
|
+ [None] |
|
+ [ |
|
no_change_btn, |
|
] |
|
* 6 |
|
) |
|
|
|
model_list = [states[i].model_name for i in range(num_sides)] |
|
all_conv_text_left = states[0].conv.get_prompt() |
|
all_conv_text_right = states[0].conv.get_prompt() |
|
all_conv_text = ( |
|
all_conv_text_left[-1000:] + all_conv_text_right[-1000:] + "\nuser: " + text |
|
) |
|
|
|
text, image_flagged, csam_flag = moderate_input( |
|
text, all_conv_text, model_list, images, ip |
|
) |
|
|
|
conv = states[0].conv |
|
if (len(conv.messages) - conv.offset) // 2 >= CONVERSATION_TURN_LIMIT: |
|
logger.info(f"conversation turn limit. ip: {ip}. text: {text}") |
|
for i in range(num_sides): |
|
states[i].skip_next = True |
|
return ( |
|
states |
|
+ [x.to_gradio_chatbot() for x in states] |
|
+ [{"text": CONVERSATION_LIMIT_MSG}] |
|
+ [ |
|
no_change_btn, |
|
] |
|
* 6 |
|
) |
|
|
|
if image_flagged: |
|
logger.info(f"image flagged. ip: {ip}. text: {text}") |
|
for i in range(num_sides): |
|
states[i].skip_next = True |
|
return ( |
|
states |
|
+ [x.to_gradio_chatbot() for x in states] |
|
+ [{"text": IMAGE_MODERATION_MSG}] |
|
+ [ |
|
no_change_btn, |
|
] |
|
* 6 |
|
) |
|
|
|
text = text[:INPUT_CHAR_LEN_LIMIT] |
|
for i in range(num_sides): |
|
post_processed_text = _prepare_text_with_image( |
|
states[i], text, images, csam_flag=csam_flag |
|
) |
|
logger.info(f"msg={post_processed_text}") |
|
states[i].conv.append_message(states[i].conv.roles[0], post_processed_text) |
|
states[i].conv.append_message(states[i].conv.roles[1], None) |
|
states[i].skip_next = False |
|
|
|
return ( |
|
states |
|
+ [x.to_gradio_chatbot() for x in states] |
|
+ [None] |
|
+ [ |
|
disable_btn, |
|
] |
|
* 6 |
|
) |
|
|
|
|
|
def build_side_by_side_vision_ui_named(models, random_questions=None): |
|
notice_markdown = """ |
|
# ⚔️ Vision Arena ⚔️ : Benchmarking FIRE-LLaVA VS. LLaVA-NeXT |
|
|
|
## 📜 Rules |
|
- Chat with any two models side-by-side and vote! |
|
- You can continue chatting for multiple rounds. |
|
- Click "Clear history" to start a new round. |
|
- You can only chat with <span style='color: #DE3163; font-weight: bold'>one image per conversation</span>. You can upload images less than 15MB. |
|
|
|
**❗️ For research purposes, we log user prompts and images, and may release this data to the public in the future. Please do not upload any confidential or personal information.** |
|
|
|
## 🤖 Choose two models to compare |
|
""" |
|
|
|
states = [gr.State() for _ in range(num_sides)] |
|
model_selectors = [None] * num_sides |
|
chatbots = [None] * num_sides |
|
|
|
notice = gr.Markdown(notice_markdown, elem_id="notice_markdown") |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=2, visible=False) as image_column: |
|
imagebox = gr.Image( |
|
type="pil", |
|
show_label=False, |
|
interactive=False, |
|
) |
|
|
|
with gr.Column(scale=5): |
|
with gr.Group(elem_id="share-region-anony"): |
|
with gr.Accordion( |
|
f"🔍 Expand to see the descriptions of {len(models)} models", |
|
open=False, |
|
): |
|
model_description_md = get_model_description_md(models) |
|
gr.Markdown( |
|
model_description_md, elem_id="model_description_markdown" |
|
) |
|
|
|
with gr.Row(): |
|
for i in range(num_sides): |
|
with gr.Column(): |
|
model_names_dict = { |
|
"llava-fire": 'FIRE-LLaVA', |
|
"llava-original": "LLaVA-Next-LLaMA-3-8B" |
|
} |
|
model_choices = [] |
|
for model_value in models: |
|
if model_value in model_names_dict: |
|
model_choices.append((model_names_dict[model_value], model_value)) |
|
else: |
|
model_choices.append((model_value, model_value)) |
|
model_selectors[i] = gr.Dropdown( |
|
choices=model_choices, |
|
value=models[i] if len(models) > i else "", |
|
interactive=True, |
|
show_label=False, |
|
container=False, |
|
) |
|
|
|
with gr.Row(): |
|
for i in range(num_sides): |
|
label = "Model A" if i == 0 else "Model B" |
|
with gr.Column(): |
|
chatbots[i] = gr.Chatbot( |
|
label=label, |
|
elem_id=f"chatbot", |
|
height=550, |
|
show_copy_button=True, |
|
) |
|
|
|
with gr.Row(): |
|
leftvote_btn = gr.Button( |
|
value="👈 A is better", visible=False, interactive=False |
|
) |
|
rightvote_btn = gr.Button( |
|
value="👉 B is better", visible=False, interactive=False |
|
) |
|
tie_btn = gr.Button(value="🤝 Tie", visible=False, interactive=False) |
|
bothbad_btn = gr.Button( |
|
value="👎 Both are bad", visible=False, interactive=False |
|
) |
|
with gr.Row(): |
|
recommendation = gr.Textbox( |
|
visible=False |
|
) |
|
with gr.Row(): |
|
textbox = gr.MultimodalTextbox( |
|
file_types=["image"], |
|
show_label=False, |
|
placeholder="Click add or drop your image here", |
|
container=True, |
|
elem_id="input_box", |
|
) |
|
|
|
with gr.Row() as button_row: |
|
if random_questions: |
|
global vqa_samples |
|
with open(random_questions, "r") as f: |
|
vqa_samples = json.load(f) |
|
random_btn = gr.Button(value="🎲 Random Example", interactive=True) |
|
clear_btn = gr.Button(value="🗑️ Clear history", interactive=False) |
|
regenerate_btn = gr.Button(value="🔄 Regenerate", interactive=False) |
|
share_btn = gr.Button(value="📷 Share") |
|
with gr.Row(): |
|
gr.Examples(examples=[ |
|
[ |
|
{ |
|
"files": ["assets/image_50.png"], |
|
"text": "Please directly answer the question and provide the correct option letter, e.g., A, B, C, D.\nQuestion: As shown in the figure, then angle COE = ()\nChoices:\nA:30°\nB:140°\nC:50°\nD:60°" |
|
}, |
|
{ |
|
"files": ["assets/test_11407.png"], |
|
"text": """Hint: Please answer the question and provide the correct option letter, e.g., A, B, C, D, at the end. |
|
Question: 如图,△ABC中,AD为中线,AD⊥AC,∠BAD=30°,AB=3,则AC长() |
|
Choices: |
|
A. 2.5 |
|
B. 2 |
|
C. 1 |
|
D. 1.5""" |
|
}, |
|
{ |
|
"files": ["assets/magnetic.png"], |
|
"text": """Hint: Please answer the question and provide the correct option letter, e.g., A, B, C, D, at the end. |
|
Question: Will these magnets attract or repel each other? |
|
Choices: |
|
A. repel |
|
B. attract""" |
|
}, |
|
{ |
|
"files": ["assets/fox.png"], |
|
"text": """Hint: Please answer the question and provide the correct option letter, e.g., A, B, C, D, at the end. |
|
Question: Which of the following organisms is the primary consumer in this food web? |
|
Choices: |
|
A. Arctic fox |
|
B. rough-legged hawk |
|
C. mushroom""" |
|
}, |
|
|
|
], |
|
],inputs=[textbox]) |
|
with gr.Accordion("Parameters", open=False) as parameter_row: |
|
temperature = gr.Slider( |
|
minimum=0.0, |
|
maximum=1.0, |
|
value=0.7, |
|
step=0.1, |
|
interactive=True, |
|
label="Temperature", |
|
) |
|
top_p = gr.Slider( |
|
minimum=0.0, |
|
maximum=1.0, |
|
value=1.0, |
|
step=0.1, |
|
interactive=True, |
|
label="Top P", |
|
) |
|
max_output_tokens = gr.Slider( |
|
minimum=16, |
|
maximum=2048, |
|
value=1024, |
|
step=64, |
|
interactive=True, |
|
label="Max output tokens", |
|
) |
|
|
|
gr.Markdown(acknowledgment_md, elem_id="ack_markdown") |
|
|
|
|
|
btn_list = [ |
|
leftvote_btn, |
|
rightvote_btn, |
|
tie_btn, |
|
bothbad_btn, |
|
regenerate_btn, |
|
clear_btn, |
|
] |
|
leftvote_btn.click( |
|
leftvote_last_response, |
|
states + model_selectors, |
|
[textbox, leftvote_btn, rightvote_btn, tie_btn, bothbad_btn], |
|
) |
|
rightvote_btn.click( |
|
rightvote_last_response, |
|
states + model_selectors, |
|
[textbox, leftvote_btn, rightvote_btn, tie_btn, bothbad_btn], |
|
) |
|
tie_btn.click( |
|
tievote_last_response, |
|
states + model_selectors, |
|
[textbox, leftvote_btn, rightvote_btn, tie_btn, bothbad_btn], |
|
) |
|
bothbad_btn.click( |
|
bothbad_vote_last_response, |
|
states + model_selectors, |
|
[textbox, leftvote_btn, rightvote_btn, tie_btn, bothbad_btn], |
|
) |
|
regenerate_btn.click( |
|
regenerate, states, states + chatbots + [textbox] + btn_list |
|
).then( |
|
bot_response_multi, |
|
states + [temperature, top_p, max_output_tokens], |
|
states + chatbots + btn_list, |
|
).then( |
|
flash_buttons, [], btn_list |
|
) |
|
clear_btn.click(clear_history, None, states + chatbots + [textbox] + btn_list) |
|
|
|
share_js = """ |
|
function (a, b, c, d) { |
|
const captureElement = document.querySelector('#share-region-named'); |
|
html2canvas(captureElement) |
|
.then(canvas => { |
|
canvas.style.display = 'none' |
|
document.body.appendChild(canvas) |
|
return canvas |
|
}) |
|
.then(canvas => { |
|
const image = canvas.toDataURL('image/png') |
|
const a = document.createElement('a') |
|
a.setAttribute('download', 'chatbot-arena.png') |
|
a.setAttribute('href', image) |
|
a.click() |
|
canvas.remove() |
|
}); |
|
return [a, b, c, d]; |
|
} |
|
""" |
|
share_btn.click(share_click, states + model_selectors, [], js=share_js) |
|
|
|
for i in range(num_sides): |
|
model_selectors[i].change( |
|
clear_history, None, states + chatbots + [textbox] + btn_list |
|
).then(set_visible_image, [textbox], [image_column]) |
|
|
|
textbox.input(add_image, [textbox], [imagebox]).then( |
|
set_visible_image, [textbox], [image_column] |
|
).then(clear_history_example, None, states + chatbots + btn_list) |
|
def get_recommendation(chatbots): |
|
|
|
logger.info(f"chatbots {chatbots}") |
|
|
|
return [gr.Textbox(visible=True, value="Teacher Feedback Recommendation Content")] |
|
|
|
textbox.submit( |
|
add_text, |
|
states + model_selectors + [textbox], |
|
states + chatbots + [textbox] + btn_list, |
|
).then(set_invisible_image, [], [image_column]).then( |
|
bot_response_multi, |
|
states + [temperature, top_p, max_output_tokens], |
|
states + chatbots + btn_list, |
|
).then( |
|
flash_buttons, [], btn_list |
|
).then( |
|
get_recommendation, chatbots, [recommendation] |
|
) |
|
|
|
if random_questions: |
|
random_btn.click( |
|
get_vqa_sample, |
|
[], |
|
[textbox, imagebox], |
|
).then(set_visible_image, [textbox], [image_column]).then( |
|
clear_history_example, None, states + chatbots + btn_list |
|
) |
|
|
|
return states + model_selectors |
|
|