|
"""A server that provides OpenAI-compatible RESTful APIs. It supports: |
|
|
|
- Chat Completions. (Reference: https://platform.openai.com/docs/api-reference/chat) |
|
- Completions. (Reference: https://platform.openai.com/docs/api-reference/completions) |
|
- Embeddings. (Reference: https://platform.openai.com/docs/api-reference/embeddings) |
|
|
|
Usage: |
|
python3 -m fastchat.serve.openai_api_server |
|
""" |
|
import asyncio |
|
import argparse |
|
import json |
|
import os |
|
from typing import Generator, Optional, Union, Dict, List, Any |
|
|
|
import aiohttp |
|
import fastapi |
|
from fastapi import Depends, HTTPException |
|
from fastapi.exceptions import RequestValidationError |
|
from fastapi.middleware.cors import CORSMiddleware |
|
from fastapi.responses import StreamingResponse, JSONResponse |
|
from fastapi.security.http import HTTPAuthorizationCredentials, HTTPBearer |
|
import httpx |
|
|
|
from pydantic_settings import BaseSettings |
|
import shortuuid |
|
import tiktoken |
|
import uvicorn |
|
|
|
from fastchat.constants import ( |
|
WORKER_API_TIMEOUT, |
|
WORKER_API_EMBEDDING_BATCH_SIZE, |
|
ErrorCode, |
|
) |
|
from fastchat.conversation import Conversation, SeparatorStyle |
|
from fastchat.protocol.openai_api_protocol import ( |
|
ChatCompletionRequest, |
|
ChatCompletionResponse, |
|
ChatCompletionResponseStreamChoice, |
|
ChatCompletionStreamResponse, |
|
ChatMessage, |
|
ChatCompletionResponseChoice, |
|
CompletionRequest, |
|
CompletionResponse, |
|
CompletionResponseChoice, |
|
DeltaMessage, |
|
CompletionResponseStreamChoice, |
|
CompletionStreamResponse, |
|
EmbeddingsRequest, |
|
EmbeddingsResponse, |
|
ErrorResponse, |
|
LogProbs, |
|
ModelCard, |
|
ModelList, |
|
ModelPermission, |
|
UsageInfo, |
|
) |
|
from fastchat.protocol.api_protocol import ( |
|
APIChatCompletionRequest, |
|
APITokenCheckRequest, |
|
APITokenCheckResponse, |
|
APITokenCheckResponseItem, |
|
) |
|
from fastchat.utils import build_logger |
|
|
|
logger = build_logger("openai_api_server", "openai_api_server.log") |
|
|
|
conv_template_map = {} |
|
|
|
fetch_timeout = aiohttp.ClientTimeout(total=3 * 3600) |
|
|
|
|
|
async def fetch_remote(url, pload=None, name=None): |
|
async with aiohttp.ClientSession(timeout=fetch_timeout) as session: |
|
async with session.post(url, json=pload) as response: |
|
chunks = [] |
|
if response.status != 200: |
|
ret = { |
|
"text": f"{response.reason}", |
|
"error_code": ErrorCode.INTERNAL_ERROR, |
|
} |
|
return json.dumps(ret) |
|
|
|
async for chunk, _ in response.content.iter_chunks(): |
|
chunks.append(chunk) |
|
output = b"".join(chunks) |
|
|
|
if name is not None: |
|
res = json.loads(output) |
|
if name != "": |
|
res = res[name] |
|
return res |
|
|
|
return output |
|
|
|
|
|
class AppSettings(BaseSettings): |
|
|
|
controller_address: str = "http://localhost:21001" |
|
api_keys: Optional[List[str]] = None |
|
|
|
|
|
app_settings = AppSettings() |
|
app = fastapi.FastAPI() |
|
headers = {"User-Agent": "FastChat API Server"} |
|
get_bearer_token = HTTPBearer(auto_error=False) |
|
|
|
|
|
async def check_api_key( |
|
auth: Optional[HTTPAuthorizationCredentials] = Depends(get_bearer_token), |
|
) -> str: |
|
if app_settings.api_keys: |
|
if auth is None or (token := auth.credentials) not in app_settings.api_keys: |
|
raise HTTPException( |
|
status_code=401, |
|
detail={ |
|
"error": { |
|
"message": "", |
|
"type": "invalid_request_error", |
|
"param": None, |
|
"code": "invalid_api_key", |
|
} |
|
}, |
|
) |
|
return token |
|
else: |
|
|
|
return None |
|
|
|
|
|
def create_error_response(code: int, message: str) -> JSONResponse: |
|
return JSONResponse( |
|
ErrorResponse(message=message, code=code).model_dump(), status_code=400 |
|
) |
|
|
|
|
|
@app.exception_handler(RequestValidationError) |
|
async def validation_exception_handler(request, exc): |
|
return create_error_response(ErrorCode.VALIDATION_TYPE_ERROR, str(exc)) |
|
|
|
|
|
async def check_model(request) -> Optional[JSONResponse]: |
|
controller_address = app_settings.controller_address |
|
ret = None |
|
|
|
models = await fetch_remote(controller_address + "/list_models", None, "models") |
|
if request.model not in models: |
|
ret = create_error_response( |
|
ErrorCode.INVALID_MODEL, |
|
f"Only {'&&'.join(models)} allowed now, your model {request.model}", |
|
) |
|
return ret |
|
|
|
|
|
async def check_length(request, prompt, max_tokens, worker_addr): |
|
if ( |
|
not isinstance(max_tokens, int) or max_tokens <= 0 |
|
): |
|
max_tokens = 1024 * 1024 |
|
|
|
context_len = await fetch_remote( |
|
worker_addr + "/model_details", {"model": request.model}, "context_length" |
|
) |
|
token_num = await fetch_remote( |
|
worker_addr + "/count_token", |
|
{"model": request.model, "prompt": prompt}, |
|
"count", |
|
) |
|
length = min(max_tokens, context_len - token_num) |
|
|
|
if length <= 0: |
|
return None, create_error_response( |
|
ErrorCode.CONTEXT_OVERFLOW, |
|
f"This model's maximum context length is {context_len} tokens. However, your messages resulted in {token_num} tokens. Please reduce the length of the messages.", |
|
) |
|
|
|
return length, None |
|
|
|
|
|
def check_requests(request) -> Optional[JSONResponse]: |
|
|
|
if request.max_tokens is not None and request.max_tokens <= 0: |
|
return create_error_response( |
|
ErrorCode.PARAM_OUT_OF_RANGE, |
|
f"{request.max_tokens} is less than the minimum of 1 - 'max_tokens'", |
|
) |
|
if request.n is not None and request.n <= 0: |
|
return create_error_response( |
|
ErrorCode.PARAM_OUT_OF_RANGE, |
|
f"{request.n} is less than the minimum of 1 - 'n'", |
|
) |
|
if request.temperature is not None and request.temperature < 0: |
|
return create_error_response( |
|
ErrorCode.PARAM_OUT_OF_RANGE, |
|
f"{request.temperature} is less than the minimum of 0 - 'temperature'", |
|
) |
|
if request.temperature is not None and request.temperature > 2: |
|
return create_error_response( |
|
ErrorCode.PARAM_OUT_OF_RANGE, |
|
f"{request.temperature} is greater than the maximum of 2 - 'temperature'", |
|
) |
|
if request.top_p is not None and request.top_p < 0: |
|
return create_error_response( |
|
ErrorCode.PARAM_OUT_OF_RANGE, |
|
f"{request.top_p} is less than the minimum of 0 - 'top_p'", |
|
) |
|
if request.top_p is not None and request.top_p > 1: |
|
return create_error_response( |
|
ErrorCode.PARAM_OUT_OF_RANGE, |
|
f"{request.top_p} is greater than the maximum of 1 - 'top_p'", |
|
) |
|
if request.top_k is not None and (request.top_k > -1 and request.top_k < 1): |
|
return create_error_response( |
|
ErrorCode.PARAM_OUT_OF_RANGE, |
|
f"{request.top_k} is out of Range. Either set top_k to -1 or >=1.", |
|
) |
|
if request.stop is not None and ( |
|
not isinstance(request.stop, str) and not isinstance(request.stop, list) |
|
): |
|
return create_error_response( |
|
ErrorCode.PARAM_OUT_OF_RANGE, |
|
f"{request.stop} is not valid under any of the given schemas - 'stop'", |
|
) |
|
|
|
return None |
|
|
|
|
|
def process_input(model_name, inp): |
|
if isinstance(inp, str): |
|
inp = [inp] |
|
elif isinstance(inp, list): |
|
if isinstance(inp[0], int): |
|
try: |
|
decoding = tiktoken.model.encoding_for_model(model_name) |
|
except KeyError: |
|
logger.warning("Warning: model not found. Using cl100k_base encoding.") |
|
model = "cl100k_base" |
|
decoding = tiktoken.get_encoding(model) |
|
inp = [decoding.decode(inp)] |
|
elif isinstance(inp[0], list): |
|
try: |
|
decoding = tiktoken.model.encoding_for_model(model_name) |
|
except KeyError: |
|
logger.warning("Warning: model not found. Using cl100k_base encoding.") |
|
model = "cl100k_base" |
|
decoding = tiktoken.get_encoding(model) |
|
inp = [decoding.decode(text) for text in inp] |
|
|
|
return inp |
|
|
|
|
|
def create_openai_logprobs(logprob_dict): |
|
"""Create OpenAI-style logprobs.""" |
|
return LogProbs(**logprob_dict) if logprob_dict is not None else None |
|
|
|
|
|
def _add_to_set(s, new_stop): |
|
if not s: |
|
return |
|
if isinstance(s, str): |
|
new_stop.add(s) |
|
else: |
|
new_stop.update(s) |
|
|
|
|
|
async def get_gen_params( |
|
model_name: str, |
|
worker_addr: str, |
|
messages: Union[str, List[Dict[str, str]]], |
|
*, |
|
temperature: float, |
|
top_p: float, |
|
top_k: Optional[int], |
|
presence_penalty: Optional[float], |
|
frequency_penalty: Optional[float], |
|
max_tokens: Optional[int], |
|
echo: Optional[bool], |
|
logprobs: Optional[int] = None, |
|
stop: Optional[Union[str, List[str]]], |
|
best_of: Optional[int] = None, |
|
use_beam_search: Optional[bool] = None, |
|
) -> Dict[str, Any]: |
|
conv = await get_conv(model_name, worker_addr) |
|
conv = Conversation( |
|
name=conv["name"], |
|
system_template=conv["system_template"], |
|
system_message=conv["system_message"], |
|
roles=conv["roles"], |
|
messages=list(conv["messages"]), |
|
offset=conv["offset"], |
|
sep_style=SeparatorStyle(conv["sep_style"]), |
|
sep=conv["sep"], |
|
sep2=conv["sep2"], |
|
stop_str=conv["stop_str"], |
|
stop_token_ids=conv["stop_token_ids"], |
|
) |
|
|
|
if isinstance(messages, str): |
|
prompt = messages |
|
images = [] |
|
else: |
|
for message in messages: |
|
msg_role = message["role"] |
|
if msg_role == "system": |
|
conv.set_system_message(message["content"]) |
|
elif msg_role == "user": |
|
if type(message["content"]) == list: |
|
image_list = [ |
|
item["image_url"]["url"] |
|
for item in message["content"] |
|
if item["type"] == "image_url" |
|
] |
|
text_list = [ |
|
item["text"] |
|
for item in message["content"] |
|
if item["type"] == "text" |
|
] |
|
|
|
|
|
text = "<image>\n" * len(image_list) |
|
text += "\n".join(text_list) |
|
conv.append_message(conv.roles[0], (text, image_list)) |
|
else: |
|
conv.append_message(conv.roles[0], message["content"]) |
|
elif msg_role == "assistant": |
|
conv.append_message(conv.roles[1], message["content"]) |
|
else: |
|
raise ValueError(f"Unknown role: {msg_role}") |
|
|
|
|
|
conv.append_message(conv.roles[1], None) |
|
prompt = conv.get_prompt() |
|
images = conv.get_images() |
|
|
|
gen_params = { |
|
"model": model_name, |
|
"prompt": prompt, |
|
"temperature": temperature, |
|
"logprobs": logprobs, |
|
"top_p": top_p, |
|
"top_k": top_k, |
|
"presence_penalty": presence_penalty, |
|
"frequency_penalty": frequency_penalty, |
|
"max_new_tokens": max_tokens, |
|
"echo": echo, |
|
"stop_token_ids": conv.stop_token_ids, |
|
} |
|
|
|
if len(images) > 0: |
|
gen_params["images"] = images |
|
|
|
if best_of is not None: |
|
gen_params.update({"best_of": best_of}) |
|
if use_beam_search is not None: |
|
gen_params.update({"use_beam_search": use_beam_search}) |
|
|
|
new_stop = set() |
|
_add_to_set(stop, new_stop) |
|
_add_to_set(conv.stop_str, new_stop) |
|
|
|
gen_params["stop"] = list(new_stop) |
|
|
|
logger.debug(f"==== request ====\n{gen_params}") |
|
return gen_params |
|
|
|
|
|
async def get_worker_address(model_name: str) -> str: |
|
""" |
|
Get worker address based on the requested model |
|
|
|
:param model_name: The worker's model name |
|
:return: Worker address from the controller |
|
:raises: :class:`ValueError`: No available worker for requested model |
|
""" |
|
controller_address = app_settings.controller_address |
|
worker_addr = await fetch_remote( |
|
controller_address + "/get_worker_address", {"model": model_name}, "address" |
|
) |
|
|
|
|
|
if worker_addr == "": |
|
raise ValueError(f"No available worker for {model_name}") |
|
logger.debug(f"model_name: {model_name}, worker_addr: {worker_addr}") |
|
return worker_addr |
|
|
|
|
|
async def get_conv(model_name: str, worker_addr: str): |
|
conv_template = conv_template_map.get((worker_addr, model_name)) |
|
if conv_template is None: |
|
conv_template = await fetch_remote( |
|
worker_addr + "/worker_get_conv_template", {"model": model_name}, "conv" |
|
) |
|
conv_template_map[(worker_addr, model_name)] = conv_template |
|
return conv_template |
|
|
|
|
|
@app.get("/v1/models", dependencies=[Depends(check_api_key)]) |
|
async def show_available_models(): |
|
controller_address = app_settings.controller_address |
|
ret = await fetch_remote(controller_address + "/refresh_all_workers") |
|
models = await fetch_remote(controller_address + "/list_models", None, "models") |
|
|
|
models.sort() |
|
|
|
model_cards = [] |
|
for m in models: |
|
model_cards.append(ModelCard(id=m, root=m, permission=[ModelPermission()])) |
|
return ModelList(data=model_cards) |
|
|
|
|
|
@app.post("/v1/chat/completions", dependencies=[Depends(check_api_key)]) |
|
async def create_chat_completion(request: ChatCompletionRequest): |
|
"""Creates a completion for the chat message""" |
|
error_check_ret = await check_model(request) |
|
if error_check_ret is not None: |
|
return error_check_ret |
|
error_check_ret = check_requests(request) |
|
if error_check_ret is not None: |
|
return error_check_ret |
|
|
|
worker_addr = await get_worker_address(request.model) |
|
|
|
gen_params = await get_gen_params( |
|
request.model, |
|
worker_addr, |
|
request.messages, |
|
temperature=request.temperature, |
|
top_p=request.top_p, |
|
top_k=request.top_k, |
|
presence_penalty=request.presence_penalty, |
|
frequency_penalty=request.frequency_penalty, |
|
max_tokens=request.max_tokens, |
|
echo=False, |
|
stop=request.stop, |
|
) |
|
|
|
max_new_tokens, error_check_ret = await check_length( |
|
request, |
|
gen_params["prompt"], |
|
gen_params["max_new_tokens"], |
|
worker_addr, |
|
) |
|
|
|
if error_check_ret is not None: |
|
return error_check_ret |
|
|
|
gen_params["max_new_tokens"] = max_new_tokens |
|
|
|
if request.stream: |
|
generator = chat_completion_stream_generator( |
|
request.model, gen_params, request.n, worker_addr |
|
) |
|
return StreamingResponse(generator, media_type="text/event-stream") |
|
|
|
choices = [] |
|
chat_completions = [] |
|
for i in range(request.n): |
|
content = asyncio.create_task(generate_completion(gen_params, worker_addr)) |
|
chat_completions.append(content) |
|
try: |
|
all_tasks = await asyncio.gather(*chat_completions) |
|
except Exception as e: |
|
return create_error_response(ErrorCode.INTERNAL_ERROR, str(e)) |
|
usage = UsageInfo() |
|
for i, content in enumerate(all_tasks): |
|
if isinstance(content, str): |
|
content = json.loads(content) |
|
|
|
if content["error_code"] != 0: |
|
return create_error_response(content["error_code"], content["text"]) |
|
choices.append( |
|
ChatCompletionResponseChoice( |
|
index=i, |
|
message=ChatMessage(role="assistant", content=content["text"]), |
|
finish_reason=content.get("finish_reason", "stop"), |
|
) |
|
) |
|
if "usage" in content: |
|
task_usage = UsageInfo.model_validate(content["usage"]) |
|
for usage_key, usage_value in task_usage.model_dump().items(): |
|
setattr(usage, usage_key, getattr(usage, usage_key) + usage_value) |
|
|
|
return ChatCompletionResponse(model=request.model, choices=choices, usage=usage) |
|
|
|
|
|
async def chat_completion_stream_generator( |
|
model_name: str, gen_params: Dict[str, Any], n: int, worker_addr: str |
|
) -> Generator[str, Any, None]: |
|
""" |
|
Event stream format: |
|
https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events#event_stream_format |
|
""" |
|
id = f"chatcmpl-{shortuuid.random()}" |
|
finish_stream_events = [] |
|
for i in range(n): |
|
|
|
choice_data = ChatCompletionResponseStreamChoice( |
|
index=i, |
|
delta=DeltaMessage(role="assistant"), |
|
finish_reason=None, |
|
) |
|
chunk = ChatCompletionStreamResponse( |
|
id=id, choices=[choice_data], model=model_name |
|
) |
|
yield f"data: {chunk.model_dump_json(exclude_unset=True)}\n\n" |
|
|
|
previous_text = "" |
|
async for content in generate_completion_stream(gen_params, worker_addr): |
|
if content["error_code"] != 0: |
|
yield f"data: {json.dumps(content, ensure_ascii=False)}\n\n" |
|
yield "data: [DONE]\n\n" |
|
return |
|
decoded_unicode = content["text"].replace("\ufffd", "") |
|
delta_text = decoded_unicode[len(previous_text) :] |
|
previous_text = ( |
|
decoded_unicode |
|
if len(decoded_unicode) > len(previous_text) |
|
else previous_text |
|
) |
|
|
|
if len(delta_text) == 0: |
|
delta_text = None |
|
choice_data = ChatCompletionResponseStreamChoice( |
|
index=i, |
|
delta=DeltaMessage(content=delta_text), |
|
finish_reason=content.get("finish_reason", None), |
|
) |
|
chunk = ChatCompletionStreamResponse( |
|
id=id, choices=[choice_data], model=model_name |
|
) |
|
if delta_text is None: |
|
if content.get("finish_reason", None) is not None: |
|
finish_stream_events.append(chunk) |
|
continue |
|
yield f"data: {chunk.model_dump_json(exclude_unset=True)}\n\n" |
|
|
|
for finish_chunk in finish_stream_events: |
|
yield f"data: {finish_chunk.model_dump_json(exclude_none=True)}\n\n" |
|
yield "data: [DONE]\n\n" |
|
|
|
|
|
@app.post("/v1/completions", dependencies=[Depends(check_api_key)]) |
|
async def create_completion(request: CompletionRequest): |
|
error_check_ret = await check_model(request) |
|
if error_check_ret is not None: |
|
return error_check_ret |
|
error_check_ret = check_requests(request) |
|
if error_check_ret is not None: |
|
return error_check_ret |
|
|
|
request.prompt = process_input(request.model, request.prompt) |
|
|
|
worker_addr = await get_worker_address(request.model) |
|
for text in request.prompt: |
|
max_tokens, error_check_ret = await check_length( |
|
request, text, request.max_tokens, worker_addr |
|
) |
|
if error_check_ret is not None: |
|
return error_check_ret |
|
|
|
if isinstance(max_tokens, int) and max_tokens < request.max_tokens: |
|
request.max_tokens = max_tokens |
|
|
|
if request.stream: |
|
generator = generate_completion_stream_generator( |
|
request, request.n, worker_addr |
|
) |
|
return StreamingResponse(generator, media_type="text/event-stream") |
|
else: |
|
text_completions = [] |
|
for text in request.prompt: |
|
gen_params = await get_gen_params( |
|
request.model, |
|
worker_addr, |
|
text, |
|
temperature=request.temperature, |
|
top_p=request.top_p, |
|
top_k=request.top_k, |
|
frequency_penalty=request.frequency_penalty, |
|
presence_penalty=request.presence_penalty, |
|
max_tokens=request.max_tokens, |
|
logprobs=request.logprobs, |
|
echo=request.echo, |
|
stop=request.stop, |
|
best_of=request.best_of, |
|
use_beam_search=request.use_beam_search, |
|
) |
|
for i in range(request.n): |
|
content = asyncio.create_task( |
|
generate_completion(gen_params, worker_addr) |
|
) |
|
text_completions.append(content) |
|
|
|
try: |
|
all_tasks = await asyncio.gather(*text_completions) |
|
except Exception as e: |
|
return create_error_response(ErrorCode.INTERNAL_ERROR, str(e)) |
|
|
|
choices = [] |
|
usage = UsageInfo() |
|
for i, content in enumerate(all_tasks): |
|
if content["error_code"] != 0: |
|
return create_error_response(content["error_code"], content["text"]) |
|
choices.append( |
|
CompletionResponseChoice( |
|
index=i, |
|
text=content["text"], |
|
logprobs=create_openai_logprobs(content.get("logprobs", None)), |
|
finish_reason=content.get("finish_reason", "stop"), |
|
) |
|
) |
|
task_usage = UsageInfo.model_validate(content["usage"]) |
|
for usage_key, usage_value in task_usage.model_dump().items(): |
|
setattr(usage, usage_key, getattr(usage, usage_key) + usage_value) |
|
|
|
return CompletionResponse( |
|
model=request.model, choices=choices, usage=UsageInfo.model_validate(usage) |
|
) |
|
|
|
|
|
async def generate_completion_stream_generator( |
|
request: CompletionRequest, n: int, worker_addr: str |
|
): |
|
model_name = request.model |
|
id = f"cmpl-{shortuuid.random()}" |
|
finish_stream_events = [] |
|
for text in request.prompt: |
|
for i in range(n): |
|
previous_text = "" |
|
gen_params = await get_gen_params( |
|
request.model, |
|
worker_addr, |
|
text, |
|
temperature=request.temperature, |
|
top_p=request.top_p, |
|
top_k=request.top_k, |
|
presence_penalty=request.presence_penalty, |
|
frequency_penalty=request.frequency_penalty, |
|
max_tokens=request.max_tokens, |
|
logprobs=request.logprobs, |
|
echo=request.echo, |
|
stop=request.stop, |
|
) |
|
async for content in generate_completion_stream(gen_params, worker_addr): |
|
if content["error_code"] != 0: |
|
yield f"data: {json.dumps(content, ensure_ascii=False)}\n\n" |
|
yield "data: [DONE]\n\n" |
|
return |
|
decoded_unicode = content["text"].replace("\ufffd", "") |
|
delta_text = decoded_unicode[len(previous_text) :] |
|
previous_text = ( |
|
decoded_unicode |
|
if len(decoded_unicode) > len(previous_text) |
|
else previous_text |
|
) |
|
|
|
choice_data = CompletionResponseStreamChoice( |
|
index=i, |
|
text=delta_text, |
|
logprobs=create_openai_logprobs(content.get("logprobs", None)), |
|
finish_reason=content.get("finish_reason", None), |
|
) |
|
chunk = CompletionStreamResponse( |
|
id=id, |
|
object="text_completion", |
|
choices=[choice_data], |
|
model=model_name, |
|
) |
|
if len(delta_text) == 0: |
|
if content.get("finish_reason", None) is not None: |
|
finish_stream_events.append(chunk) |
|
continue |
|
yield f"data: {chunk.model_dump_json(exclude_unset=True)}\n\n" |
|
|
|
for finish_chunk in finish_stream_events: |
|
yield f"data: {finish_chunk.model_dump_json(exclude_unset=True)}\n\n" |
|
yield "data: [DONE]\n\n" |
|
|
|
|
|
async def generate_completion_stream(payload: Dict[str, Any], worker_addr: str): |
|
controller_address = app_settings.controller_address |
|
async with httpx.AsyncClient() as client: |
|
delimiter = b"\0" |
|
async with client.stream( |
|
"POST", |
|
worker_addr + "/worker_generate_stream", |
|
headers=headers, |
|
json=payload, |
|
timeout=WORKER_API_TIMEOUT, |
|
) as response: |
|
|
|
buffer = b"" |
|
async for raw_chunk in response.aiter_raw(): |
|
buffer += raw_chunk |
|
while (chunk_end := buffer.find(delimiter)) >= 0: |
|
chunk, buffer = buffer[:chunk_end], buffer[chunk_end + 1 :] |
|
if not chunk: |
|
continue |
|
yield json.loads(chunk.decode()) |
|
|
|
|
|
async def generate_completion(payload: Dict[str, Any], worker_addr: str): |
|
return await fetch_remote(worker_addr + "/worker_generate", payload, "") |
|
|
|
|
|
@app.post("/v1/embeddings", dependencies=[Depends(check_api_key)]) |
|
@app.post("/v1/engines/{model_name}/embeddings", dependencies=[Depends(check_api_key)]) |
|
async def create_embeddings(request: EmbeddingsRequest, model_name: str = None): |
|
"""Creates embeddings for the text""" |
|
if request.model is None: |
|
request.model = model_name |
|
error_check_ret = await check_model(request) |
|
if error_check_ret is not None: |
|
return error_check_ret |
|
|
|
request.input = process_input(request.model, request.input) |
|
|
|
data = [] |
|
token_num = 0 |
|
batch_size = WORKER_API_EMBEDDING_BATCH_SIZE |
|
batches = [ |
|
request.input[i : min(i + batch_size, len(request.input))] |
|
for i in range(0, len(request.input), batch_size) |
|
] |
|
for num_batch, batch in enumerate(batches): |
|
payload = { |
|
"model": request.model, |
|
"input": batch, |
|
"encoding_format": request.encoding_format, |
|
} |
|
embedding = await get_embedding(payload) |
|
if "error_code" in embedding and embedding["error_code"] != 0: |
|
return create_error_response(embedding["error_code"], embedding["text"]) |
|
data += [ |
|
{ |
|
"object": "embedding", |
|
"embedding": emb, |
|
"index": num_batch * batch_size + i, |
|
} |
|
for i, emb in enumerate(embedding["embedding"]) |
|
] |
|
token_num += embedding["token_num"] |
|
return EmbeddingsResponse( |
|
data=data, |
|
model=request.model, |
|
usage=UsageInfo( |
|
prompt_tokens=token_num, |
|
total_tokens=token_num, |
|
completion_tokens=None, |
|
), |
|
).model_dump(exclude_none=True) |
|
|
|
|
|
async def get_embedding(payload: Dict[str, Any]): |
|
controller_address = app_settings.controller_address |
|
model_name = payload["model"] |
|
worker_addr = await get_worker_address(model_name) |
|
|
|
embedding = await fetch_remote(worker_addr + "/worker_get_embeddings", payload) |
|
return json.loads(embedding) |
|
|
|
|
|
|
|
|
|
|
|
@app.post("/api/v1/token_check") |
|
async def count_tokens(request: APITokenCheckRequest): |
|
""" |
|
Checks the token count for each message in your list |
|
This is not part of the OpenAI API spec. |
|
""" |
|
checkedList = [] |
|
for item in request.prompts: |
|
worker_addr = await get_worker_address(item.model) |
|
|
|
context_len = await fetch_remote( |
|
worker_addr + "/model_details", |
|
{"prompt": item.prompt, "model": item.model}, |
|
"context_length", |
|
) |
|
|
|
token_num = await fetch_remote( |
|
worker_addr + "/count_token", |
|
{"prompt": item.prompt, "model": item.model}, |
|
"count", |
|
) |
|
|
|
can_fit = True |
|
if token_num + item.max_tokens > context_len: |
|
can_fit = False |
|
|
|
checkedList.append( |
|
APITokenCheckResponseItem( |
|
fits=can_fit, contextLength=context_len, tokenCount=token_num |
|
) |
|
) |
|
|
|
return APITokenCheckResponse(prompts=checkedList) |
|
|
|
|
|
@app.post("/api/v1/chat/completions") |
|
async def create_chat_completion(request: APIChatCompletionRequest): |
|
"""Creates a completion for the chat message""" |
|
error_check_ret = await check_model(request) |
|
if error_check_ret is not None: |
|
return error_check_ret |
|
error_check_ret = check_requests(request) |
|
if error_check_ret is not None: |
|
return error_check_ret |
|
|
|
worker_addr = await get_worker_address(request.model) |
|
|
|
gen_params = await get_gen_params( |
|
request.model, |
|
worker_addr, |
|
request.messages, |
|
temperature=request.temperature, |
|
top_p=request.top_p, |
|
top_k=request.top_k, |
|
presence_penalty=request.presence_penalty, |
|
frequency_penalty=request.frequency_penalty, |
|
max_tokens=request.max_tokens, |
|
echo=False, |
|
stop=request.stop, |
|
) |
|
|
|
if request.repetition_penalty is not None: |
|
gen_params["repetition_penalty"] = request.repetition_penalty |
|
|
|
max_new_tokens, error_check_ret = await check_length( |
|
request, |
|
gen_params["prompt"], |
|
gen_params["max_new_tokens"], |
|
worker_addr, |
|
) |
|
|
|
if error_check_ret is not None: |
|
return error_check_ret |
|
|
|
gen_params["max_new_tokens"] = max_new_tokens |
|
|
|
if request.stream: |
|
generator = chat_completion_stream_generator( |
|
request.model, gen_params, request.n, worker_addr |
|
) |
|
return StreamingResponse(generator, media_type="text/event-stream") |
|
|
|
choices = [] |
|
chat_completions = [] |
|
for i in range(request.n): |
|
content = asyncio.create_task(generate_completion(gen_params, worker_addr)) |
|
chat_completions.append(content) |
|
try: |
|
all_tasks = await asyncio.gather(*chat_completions) |
|
except Exception as e: |
|
return create_error_response(ErrorCode.INTERNAL_ERROR, str(e)) |
|
usage = UsageInfo() |
|
for i, content in enumerate(all_tasks): |
|
if content["error_code"] != 0: |
|
return create_error_response(content["error_code"], content["text"]) |
|
choices.append( |
|
ChatCompletionResponseChoice( |
|
index=i, |
|
message=ChatMessage(role="assistant", content=content["text"]), |
|
finish_reason=content.get("finish_reason", "stop"), |
|
) |
|
) |
|
task_usage = UsageInfo.model_validate(content["usage"]) |
|
for usage_key, usage_value in task_usage.model_dump().items(): |
|
setattr(usage, usage_key, getattr(usage, usage_key) + usage_value) |
|
|
|
return ChatCompletionResponse(model=request.model, choices=choices, usage=usage) |
|
|
|
|
|
|
|
|
|
|
|
def create_openai_api_server(): |
|
parser = argparse.ArgumentParser( |
|
description="FastChat ChatGPT-Compatible RESTful API server." |
|
) |
|
parser.add_argument("--host", type=str, default="localhost", help="host name") |
|
parser.add_argument("--port", type=int, default=8000, help="port number") |
|
parser.add_argument( |
|
"--controller-address", type=str, default="http://localhost:21001" |
|
) |
|
parser.add_argument( |
|
"--allow-credentials", action="store_true", help="allow credentials" |
|
) |
|
parser.add_argument( |
|
"--allowed-origins", type=json.loads, default=["*"], help="allowed origins" |
|
) |
|
parser.add_argument( |
|
"--allowed-methods", type=json.loads, default=["*"], help="allowed methods" |
|
) |
|
parser.add_argument( |
|
"--allowed-headers", type=json.loads, default=["*"], help="allowed headers" |
|
) |
|
parser.add_argument( |
|
"--api-keys", |
|
type=lambda s: s.split(","), |
|
help="Optional list of comma separated API keys", |
|
) |
|
parser.add_argument( |
|
"--ssl", |
|
action="store_true", |
|
required=False, |
|
default=False, |
|
help="Enable SSL. Requires OS Environment variables 'SSL_KEYFILE' and 'SSL_CERTFILE'.", |
|
) |
|
args = parser.parse_args() |
|
|
|
app.add_middleware( |
|
CORSMiddleware, |
|
allow_origins=args.allowed_origins, |
|
allow_credentials=args.allow_credentials, |
|
allow_methods=args.allowed_methods, |
|
allow_headers=args.allowed_headers, |
|
) |
|
app_settings.controller_address = args.controller_address |
|
app_settings.api_keys = args.api_keys |
|
|
|
logger.info(f"args: {args}") |
|
return args |
|
|
|
|
|
if __name__ == "__main__": |
|
args = create_openai_api_server() |
|
if args.ssl: |
|
uvicorn.run( |
|
app, |
|
host=args.host, |
|
port=args.port, |
|
log_level="info", |
|
ssl_keyfile=os.environ["SSL_KEYFILE"], |
|
ssl_certfile=os.environ["SSL_CERTFILE"], |
|
) |
|
else: |
|
uvicorn.run(app, host=args.host, port=args.port, log_level="info") |
|
|