""" Conversation prompt templates. We kindly request that you import fastchat instead of copying this file if you wish to use it. If you have any changes in mind, please contribute back so the community can benefit collectively and continue to maintain these valuable templates. """ import base64 import dataclasses from enum import auto, IntEnum from io import BytesIO import os from typing import List, Any, Dict, Union, Tuple from loguru import logger class SeparatorStyle(IntEnum): """Separator styles.""" ADD_COLON_SINGLE = auto() ADD_COLON_TWO = auto() ADD_COLON_SPACE_SINGLE = auto() NO_COLON_SINGLE = auto() NO_COLON_TWO = auto() ADD_NEW_LINE_SINGLE = auto() LLAMA2 = auto() LLAMA3 = auto() CHATGLM = auto() CHATML = auto() CHATINTERN = auto() DOLLY = auto() RWKV = auto() PHOENIX = auto() ROBIN = auto() FALCON_CHAT = auto() CHATGLM3 = auto() DEEPSEEK_CHAT = auto() METAMATH = auto() YUAN2 = auto() GEMMA = auto() CLLM = auto() DEFAULT = auto() IMAGE_PLACEHOLDER_STR = "$$$$" @dataclasses.dataclass class Conversation: """A class that manages prompt templates and keeps all conversation history.""" # The name of this template name: str # The template of the system prompt system_template: str = "{system_message}" # The system message system_message: str = "" # The names of two roles roles: Tuple[str] = ("USER", "ASSISTANT") # All messages. Each item is (role, message). # Each message is either a string or a tuple of (string, List[image_url]). messages: List[List[str]] = () # The number of few shot examples offset: int = 0 # The separator style and configurations sep_style: SeparatorStyle = SeparatorStyle.ADD_COLON_SINGLE sep: str = "\n" sep2: str = None # Stop criteria (the default one is EOS token) stop_str: Union[str, List[str]] = None # Stops generation if meeting any token in this list stop_token_ids: List[int] = None # The maximum image size in megabytes that this model takes in. None means we do not resize the image. max_image_size_mb: int = None def get_prompt(self) -> str: """Get the prompt for generation.""" system_prompt = self.system_template.format(system_message=self.system_message) if self.sep_style == SeparatorStyle.ADD_COLON_SINGLE: ret = system_prompt + self.sep for role, message in self.messages: if message: ret += role + ": " + message + self.sep else: ret += role + ":" return ret elif self.sep_style == SeparatorStyle.ADD_COLON_TWO: seps = [self.sep, self.sep2] ret = system_prompt + seps[0] for i, (role, message) in enumerate(self.messages): if message: if type(message) is tuple: message, images = message message = IMAGE_PLACEHOLDER_STR * len(images) + message ret += role + ": " + message + seps[i % 2] else: ret += role + ":" return ret elif self.sep_style == SeparatorStyle.ADD_COLON_SPACE_SINGLE: ret = system_prompt + self.sep for role, message in self.messages: if message: ret += role + ": " + message + self.sep else: ret += role + ": " # must be end with a space return ret elif self.sep_style == SeparatorStyle.ADD_NEW_LINE_SINGLE: ret = "" if system_prompt == "" else system_prompt + self.sep for role, message in self.messages: if message: ret += role + "\n" + message + self.sep else: ret += role + "\n" return ret elif self.sep_style == SeparatorStyle.NO_COLON_SINGLE: ret = system_prompt for role, message in self.messages: if message: ret += role + message + self.sep else: ret += role return ret elif self.sep_style == SeparatorStyle.NO_COLON_TWO: seps = [self.sep, self.sep2] ret = system_prompt for i, (role, message) in enumerate(self.messages): if message: ret += role + message + seps[i % 2] else: ret += role return ret elif self.sep_style == SeparatorStyle.RWKV: ret = system_prompt for i, (role, message) in enumerate(self.messages): if message: ret += ( role + ": " + message.replace("\r\n", "\n").replace("\n\n", "\n") ) ret += "\n\n" else: ret += role + ":" return ret elif self.sep_style == SeparatorStyle.LLAMA2: seps = [self.sep, self.sep2] if self.system_message: ret = system_prompt else: ret = "[INST] " for i, (role, message) in enumerate(self.messages): tag = self.roles[i % 2] if message: if i == 0: ret += message + " " else: ret += tag + " " + message + seps[i % 2] else: ret += tag return ret elif self.sep_style == SeparatorStyle.LLAMA3: ret = "<|begin_of_text|>" if self.system_message: ret += system_prompt else: ret += "" for i, (role, message) in enumerate(self.messages): if message: logger.info("msg={}", message) if type(message) is tuple: message, images = message message = "" * len(images) + message ret += f"<|start_header_id|>{role}<|end_header_id|>\n\n" ret += f"{message.strip()}<|eot_id|>" else: ret += f"<|start_header_id|>{role}<|end_header_id|>\n\n" return ret elif self.sep_style == SeparatorStyle.CHATGLM: # source: https://huggingface.co/THUDM/chatglm-6b/blob/1d240ba371910e9282298d4592532d7f0f3e9f3e/modeling_chatglm.py#L1302-L1308 # source2: https://huggingface.co/THUDM/chatglm2-6b/blob/e186c891cf64310ac66ef10a87e6635fa6c2a579/modeling_chatglm.py#L926 round_add_n = 1 if self.name == "chatglm2" else 0 if system_prompt: ret = system_prompt + self.sep else: ret = "" for i, (role, message) in enumerate(self.messages): if i % 2 == 0: ret += f"[Round {i//2 + round_add_n}]{self.sep}" if message: ret += f"{role}:{message}{self.sep}" else: ret += f"{role}:" return ret elif self.sep_style == SeparatorStyle.CHATML: ret = "" if system_prompt == "" else system_prompt + self.sep + "\n" for role, message in self.messages: if message: if type(message) is tuple: message, images = message message = IMAGE_PLACEHOLDER_STR * len(images) + message ret += role + "\n" + message + self.sep + "\n" else: ret += role + "\n" return ret elif self.sep_style == SeparatorStyle.CHATGLM3: ret = "" if self.system_message: ret += system_prompt for role, message in self.messages: if message: ret += role + "\n" + message else: ret += role return ret elif self.sep_style == SeparatorStyle.CHATINTERN: # source: https://huggingface.co/internlm/internlm-chat-7b-8k/blob/bd546fa984b4b0b86958f56bf37f94aa75ab8831/modeling_internlm.py#L771 seps = [self.sep, self.sep2] ret = system_prompt for i, (role, message) in enumerate(self.messages): if i % 2 == 0: ret += "" if message: ret += role + ":" + message + seps[i % 2] + "\n" else: ret += role + ":" return ret elif self.sep_style == SeparatorStyle.DOLLY: seps = [self.sep, self.sep2] ret = system_prompt for i, (role, message) in enumerate(self.messages): if message: ret += role + ":\n" + message + seps[i % 2] if i % 2 == 1: ret += "\n\n" else: ret += role + ":\n" return ret elif self.sep_style == SeparatorStyle.PHOENIX: ret = system_prompt for role, message in self.messages: if message: ret += role + ": " + "" + message + "" else: ret += role + ": " + "" return ret elif self.sep_style == SeparatorStyle.ROBIN: ret = system_prompt + self.sep for role, message in self.messages: if message: ret += role + ":\n" + message + self.sep else: ret += role + ":\n" return ret elif self.sep_style == SeparatorStyle.FALCON_CHAT: ret = "" if self.system_message: ret += system_prompt + self.sep for role, message in self.messages: if message: ret += role + ": " + message + self.sep else: ret += role + ":" return ret elif self.sep_style == SeparatorStyle.METAMATH: ret = "" if system_prompt == "" else system_prompt + self.sep for i, (role, message) in enumerate(self.messages): # For MetaMath, sep2 is used to prefix the message. starting_sep = ":\n" if i % 2 == 0 else ": " + self.sep2 ending_sep = self.sep if i % 2 == 0 else "" if message: ret += role + starting_sep + message + ending_sep else: ret += role + starting_sep return ret elif self.sep_style == SeparatorStyle.DEEPSEEK_CHAT: seps = [self.sep, self.sep2] ret = system_prompt for i, (role, message) in enumerate(self.messages): if message: ret += role + ": " + message + seps[i % 2] else: ret += role + ":" return ret elif self.sep_style == SeparatorStyle.YUAN2: seps = [self.sep, self.sep2] ret = "" if self.system_message: ret += system_prompt + seps[1] for _, message in self.messages: if message: ret += message + "" else: ret += "" ret = ret.rstrip("") + seps[0] return ret elif self.sep_style == SeparatorStyle.GEMMA: ret = "" for role, message in self.messages: if message: ret += "" + role + "\n" + message + self.sep else: ret += "" + role + "\n" return ret elif self.sep_style == SeparatorStyle.CLLM: seps = [self.sep, self.sep2] ret = system_prompt + seps[0] for i, (role, message) in enumerate(self.messages[-2:]): if message: if type(message) is tuple: message, images = message message = IMAGE_PLACEHOLDER_STR * len(images) + message ret += role + ": " + message + seps[i % 2] else: ret += role + ":" return ret elif self.sep_style == SeparatorStyle.DEFAULT: ret = system_prompt + "\n" for role, message in self.messages: if message: if type(message) is tuple: message, images = message ret += role + ": " + message + "\n" else: ret += role + ":" return ret else: raise ValueError(f"Invalid style: {self.sep_style}") def get_images(self): images = [] for i, (role, msg) in enumerate(self.messages[self.offset :]): if i % 2 == 0: if type(msg) is tuple: for image in msg[1]: images.append(image) return images def set_system_message(self, system_message: str): """Set the system message.""" self.system_message = system_message def get_system_message(self): """return the system message.""" return self.system_message def append_message(self, role: str, message: str): """Append a new message.""" self.messages.append([role, message]) def update_last_message(self, message: str): """Update the last output. The last message is typically set to be None when constructing the prompt, so we need to update it in-place after getting the response from a model. """ self.messages[-1][1] = message def convert_image_to_base64(self, image): """Given an image, return the base64 encoded image string.""" from PIL import Image import requests from src.utils import resize_image_and_return_image_in_bytes # Load image if it has not been loaded in yet if type(image) == str: if image.startswith("http://") or image.startswith("https://"): response = requests.get(image) image = Image.open(BytesIO(response.content)).convert("RGB") elif "base64" in image: # OpenAI format is: data:image/jpeg;base64,{base64_encoded_image_str} return image.split(",")[1] else: image = Image.open(image).convert("RGB") image_bytes = resize_image_and_return_image_in_bytes( image, self.max_image_size_mb ) img_b64_str = base64.b64encode(image_bytes.getvalue()).decode() return img_b64_str def to_gradio_chatbot(self): """Convert the conversation to gradio chatbot format.""" ret = [] for i, (role, msg) in enumerate(self.messages[self.offset :]): if i % 2 == 0: if type(msg) is tuple: msg, image = msg img_b64_str = image[0] # Only one image on gradio at one time if img_b64_str.startswith("http://") or img_b64_str.startswith( "https://" ): img_str = f'user upload image' else: img_str = f'user upload image' msg = img_str + msg.replace("\n", "").strip() ret.append([msg, None]) else: ret[-1][-1] = msg return ret def to_openai_image_format(self, image_urls): import base64 openai_images = [] for image_url in image_urls: if image_url.startswith("http://") or image_url.startswith( "https://" ): # input is a url openai_images.append(image_url) elif image_url.lower().endswith( ("png", "jpg", "jpeg", "webp", "gif") ): # input is a local image img_b64_str = self.convert_image_to_base64(image_url) filetype = image_url.split(".")[-1].lower() openai_images.append(f"data:image/{filetype};base64,{img_b64_str}") else: try: assert ( base64.b64encode(base64.b64decode(image_url)) == image_url.encode() ), "The image data is not a valid base64 encoded string" openai_images.append(f"data:image/png;base64,{image_url}") except: raise ValueError( f"This file is not valid or not currently supported by the OpenAI API: {image_url}" ) return openai_images def to_openai_vision_api_messages(self): """Convert the conversation to OpenAI vision api completion format""" if self.system_message == "": ret = [] else: ret = [ { "role": "system", "content": [{"type": "text", "text": self.system_message}], } ] for i, (_, msg) in enumerate(self.messages[self.offset :]): if i % 2 == 0: if type(msg) is tuple: content_list = [{"type": "text", "text": msg[0]}] image_urls = self.to_openai_image_format(msg[1]) for image_url in image_urls: content_list.append( {"type": "image_url", "image_url": {"url": image_url}} ) ret.append({"role": "user", "content": content_list}) else: ret.append( {"role": "user", "content": [{"type": "text", "text": msg}]} ) else: if msg is not None: ret.append( { "role": "assistant", "content": [{"type": "text", "text": msg}], } ) return ret def to_openai_api_messages(self): """Convert the conversation to OpenAI chat completion format.""" if self.system_message == "": ret = [] else: ret = [{"role": "system", "content": self.system_message}] for i, (_, msg) in enumerate(self.messages[self.offset :]): if i % 2 == 0: ret.append({"role": "user", "content": msg}) else: if msg is not None: ret.append({"role": "assistant", "content": msg}) return ret def to_gemini_api_messages(self): from src.utils import load_image if self.system_message == "": ret = [] else: ret = [{"role": "system", "content": self.system_message}] for i, (_, msg) in enumerate(self.messages[self.offset :]): if i % 2 == 0: if type(msg) is tuple: text, images = msg[0], msg[1] content_list = [text] for image in images: pil_image = load_image(image) content_list.append(pil_image) ret.append({"role": "user", "content": content_list}) else: ret.append({"role": "user", "content": msg}) else: if msg is not None: ret.append({"role": "model", "content": msg}) return ret def to_vertex_api_messages(self): from vertexai.preview.generative_models import Image import base64 import requests if self.system_message == "": ret = [] else: ret = [self.system_message] for role, msg in self.messages[self.offset :]: if msg is not None: if type(msg) is tuple: text, images = msg[0], msg[1] for image in images: if image.startswith("http://") or image.startswith("https://"): response = requests.get(image) image = response.content else: # base64 image = base64.b64decode(image) ret.append(Image.from_bytes(image)) ret.append(text) else: ret.append(msg) return ret def to_anthropic_vision_api_messages(self): """Convert the conversation to Claude-3 Messages Vision API format""" ret = [ { "role": "system", "content": [{"type": "text", "text": self.system_message}], } ] for i, (_, msg) in enumerate(self.messages[self.offset :]): if i % 2 == 0: if type(msg) is tuple: content_list = [{"type": "text", "text": msg[0]}] for image_url in msg[1]: # Claude only supports base64 if image_url.startswith("http://") or image_url.startswith( "https://" ): image_url = self.convert_image_to_base64(image_url) content_list.append( { "type": "image", "source": { "type": "base64", "media_type": "image/png", "data": image_url, }, } ) ret.append({"role": "user", "content": content_list}) else: ret.append( {"role": "user", "content": [{"type": "text", "text": msg}]} ) else: if msg is not None: ret.append( { "role": "assistant", "content": [{"type": "text", "text": msg}], } ) return ret def to_reka_api_messages(self): ret = [] for i, (_, msg) in enumerate(self.messages[self.offset :]): if i % 2 == 0: if type(msg) == tuple: text, images = msg for image in images: if image.startswith("https://") or image.startswith("http://"): ret.append( {"type": "human", "text": text, "media_url": image} ) else: ret.append( { "type": "human", "text": text, "media_url": f"data:image/png;base64,{image}", } ) else: ret.append({"type": "human", "text": msg}) else: if msg is not None: ret.append({"type": "model", "text": msg}) return ret def save_new_images(self, has_csam_images=False, use_remote_storage=False): import hashlib from src.constants import LOGDIR from src.utils import load_image, upload_image_file_to_gcs _, last_user_message = self.messages[-2] if type(last_user_message) == tuple: text, images = last_user_message[0], last_user_message[1] loaded_images = [load_image(image) for image in images] image_hashes = [ hashlib.md5(image.tobytes()).hexdigest() for image in loaded_images ] image_directory_name = "csam_images" if has_csam_images else "serve_images" for i, (loaded_image, hash_str) in enumerate( zip(loaded_images, image_hashes) ): filename = os.path.join( image_directory_name, f"{hash_str}.jpg", ) if use_remote_storage and not has_csam_images: image_url = upload_image_file_to_gcs(loaded_image, filename) # NOTE(chris): If the URL were public, then we set it here so future model uses the link directly # images[i] = image_url else: filename = os.path.join(LOGDIR, filename) if not os.path.isfile(filename): os.makedirs(os.path.dirname(filename), exist_ok=True) loaded_image.save(filename) def extract_text_and_image_hashes_from_messages(self): import hashlib from src.utils import load_image messages = [] for role, message in self.messages: if type(message) is tuple: text, images = message[0], message[1] image_hashes = [] for image in images: if image.startswith("http://") or image.startswith("https://"): image_hashes.append(image) else: image = load_image(image) image_hash = hashlib.md5(image.tobytes()).hexdigest() image_hashes.append(image_hash) messages.append((role, (text, image_hashes))) else: messages.append((role, message)) return messages def copy(self): return Conversation( name=self.name, system_template=self.system_template, system_message=self.system_message, roles=self.roles, messages=[[x, y] for x, y in self.messages], offset=self.offset, sep_style=self.sep_style, sep=self.sep, sep2=self.sep2, stop_str=self.stop_str, stop_token_ids=self.stop_token_ids, max_image_size_mb=self.max_image_size_mb, ) def dict(self): return { "template_name": self.name, "system_message": self.system_message, "roles": self.roles, "messages": self.extract_text_and_image_hashes_from_messages(), "offset": self.offset, } def convert_image_to_base64(image, max_image_size_mb): """Given an image, return the base64 encoded image string.""" from PIL import Image import requests from src.utils import resize_image_and_return_image_in_bytes # Load image if it has not been loaded in yet if type(image) == str: if image.startswith("http://") or image.startswith("https://"): response = requests.get(image) image = Image.open(BytesIO(response.content)).convert("RGB") elif "base64" in image: # OpenAI format is: data:image/jpeg;base64,{base64_encoded_image_str} return image.split(",")[1] else: image = Image.open(image).convert("RGB") image_bytes = resize_image_and_return_image_in_bytes( image, max_image_size_mb ) img_b64_str = base64.b64encode(image_bytes.getvalue()).decode() return img_b64_str # A global registry for all conversation templates conv_templates: Dict[str, Conversation] = {} def register_conv_template(template: Conversation, override: bool = False): """Register a new conversation template.""" if not override: assert ( template.name not in conv_templates ), f"{template.name} has been registered." conv_templates[template.name] = template def get_conv_template(name: str) -> Conversation: """Get a conversation template.""" return conv_templates[name].copy() # An empty template for raw conversation. register_conv_template( Conversation( name="raw", system_message="", roles=("", ""), sep_style=SeparatorStyle.NO_COLON_SINGLE, sep="", ) ) # A template with a one-shot conversation example register_conv_template( Conversation( name="one_shot", system_message="A chat between a curious human and an artificial intelligence assistant. " "The assistant gives helpful, detailed, and polite answers to the human's questions.", roles=("Human", "Assistant"), messages=( ( "Human", "Got any creative ideas for a 10 year old’s birthday?", ), ( "Assistant", """Of course! Here are some creative ideas for a 10-year-old's birthday party: 1. Treasure Hunt: Organize a treasure hunt in your backyard or nearby park. Create clues and riddles for the kids to solve, leading them to hidden treasures and surprises. 2. Science Party: Plan a science-themed party where kids can engage in fun and interactive experiments. You can set up different stations with activities like making slime, erupting volcanoes, or creating simple chemical reactions. 3. Outdoor Movie Night: Set up a backyard movie night with a projector and a large screen or white sheet. Create a cozy seating area with blankets and pillows, and serve popcorn and snacks while the kids enjoy a favorite movie under the stars. 4. DIY Crafts Party: Arrange a craft party where kids can unleash their creativity. Provide a variety of craft supplies like beads, paints, and fabrics, and let them create their own unique masterpieces to take home as party favors. 5. Sports Olympics: Host a mini Olympics event with various sports and games. Set up different stations for activities like sack races, relay races, basketball shooting, and obstacle courses. Give out medals or certificates to the participants. 6. Cooking Party: Have a cooking-themed party where the kids can prepare their own mini pizzas, cupcakes, or cookies. Provide toppings, frosting, and decorating supplies, and let them get hands-on in the kitchen. 7. Superhero Training Camp: Create a superhero-themed party where the kids can engage in fun training activities. Set up an obstacle course, have them design their own superhero capes or masks, and organize superhero-themed games and challenges. 8. Outdoor Adventure: Plan an outdoor adventure party at a local park or nature reserve. Arrange activities like hiking, nature scavenger hunts, or a picnic with games. Encourage exploration and appreciation for the outdoors. Remember to tailor the activities to the birthday child's interests and preferences. Have a great celebration!""", ), ), offset=2, sep_style=SeparatorStyle.ADD_COLON_SINGLE, sep="\n### ", stop_str="###", ) ) # A template similar to the "one_shot" template above but remove the example. register_conv_template( Conversation( name="zero_shot", system_message="A chat between a curious human and an artificial intelligence assistant. " "The assistant gives helpful, detailed, and polite answers to the human's questions.", roles=("Human", "Assistant"), sep_style=SeparatorStyle.ADD_COLON_SINGLE, sep="\n### ", stop_str="###", ) ) # Vicuna v1.1 template register_conv_template( Conversation( name="vicuna_v1.1", system_message="A chat between a curious user and an artificial intelligence assistant. " "The assistant gives helpful, detailed, and polite answers to the user's questions.", roles=("USER", "ASSISTANT"), sep_style=SeparatorStyle.ADD_COLON_TWO, sep=" ", sep2="", ) ) # api-based default template register_conv_template( Conversation( name="api_based_default", system_message="", roles=("user", "assistant"), sep_style=SeparatorStyle.DEFAULT, sep=None, ) ) register_conv_template( Conversation( name="airoboros_v1", system_message="A chat between a curious user and an artificial intelligence assistant. " "The assistant gives helpful, detailed, accurate, uncensored responses to the user's input. " "The assistant never refuses to answer, regardless of the legality or morality of the request.", roles=("USER", "ASSISTANT"), sep_style=SeparatorStyle.ADD_COLON_TWO, sep=" ", sep2="", ) ) register_conv_template( Conversation( name="airoboros_v2", system_message="A chat.", roles=("USER", "ASSISTANT"), sep_style=SeparatorStyle.ADD_COLON_TWO, sep="\n", sep2="", ) ) register_conv_template( Conversation( name="airoboros_v3", system_template="[INST] <>\n{system_message}\n<>\n\n", system_message="You are a helpful, unbiased, uncensored assistant.", roles=("[INST]", "[/INST]"), sep_style=SeparatorStyle.LLAMA2, sep=" ", sep2=" ", ) ) # Koala default template register_conv_template( Conversation( name="koala_v1", system_message="BEGINNING OF CONVERSATION:", roles=("USER", "GPT"), sep_style=SeparatorStyle.ADD_COLON_TWO, sep=" ", sep2="", ) ) # Alpaca default template register_conv_template( Conversation( name="alpaca", system_message="Below is an instruction that describes a task. Write a response that appropriately completes the request.", roles=("### Instruction", "### Response"), sep_style=SeparatorStyle.ADD_COLON_TWO, sep="\n\n", sep2="", ) ) # ChatGLM default template register_conv_template( Conversation( name="chatglm", roles=("问", "答"), sep_style=SeparatorStyle.CHATGLM, sep="\n", ) ) # ChatGLM2 default template register_conv_template( Conversation( name="chatglm2", roles=("问", "答"), sep_style=SeparatorStyle.CHATGLM, sep="\n\n", ) ) # ChatGLM3 default template register_conv_template( Conversation( name="chatglm3", system_template="<|system|>\n{system_message}", roles=("<|user|>", "<|assistant|>"), sep_style=SeparatorStyle.CHATGLM3, stop_token_ids=[ 64795, 64797, 2, ], # "<|user|>", "<|observation|>", "" ) ) # CodeGeex(2) Template register_conv_template( Conversation( name="codegeex", roles=("", ""), sep_style=SeparatorStyle.NO_COLON_SINGLE, sep="\n\n", stop_token_ids=[0, 2], ) ) # Dolly V2 default template register_conv_template( Conversation( name="dolly_v2", system_message="Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n", roles=("### Instruction", "### Response"), sep_style=SeparatorStyle.DOLLY, sep="\n\n", sep2="### End", ) ) # OpenAssistant Pythia default template register_conv_template( Conversation( name="oasst_pythia", roles=("<|prompter|>", "<|assistant|>"), sep_style=SeparatorStyle.NO_COLON_SINGLE, sep="<|endoftext|>", ) ) # OpenAssistant default template register_conv_template( Conversation( name="oasst_llama", roles=("<|prompter|>", "<|assistant|>"), sep_style=SeparatorStyle.NO_COLON_SINGLE, sep="", ) ) # OpenChat 3.5 default template register_conv_template( Conversation( name="openchat_3.5", roles=("GPT4 Correct User", "GPT4 Correct Assistant"), sep_style=SeparatorStyle.FALCON_CHAT, sep="<|end_of_turn|>", ) ) # TenyxChat default template register_conv_template( Conversation( name="tenyxchat", roles=("User", "Assistant"), sep_style=SeparatorStyle.FALCON_CHAT, sep="<|end_of_turn|>", ) ) # Deepseek code default template register_conv_template( Conversation( name="deepseek-coder", system_template="You are an AI programming assistant, utilizing the DeepSeek Coder model, developed by DeepSeek Company, and you only answer questions related to computer science. For politically sensitive questions, security and privacy issues, and other non-computer science questions, you will refuse to answer.", roles=("### Instruction:", "### Response:"), sep="\n", stop_str="<|EOT|>", sep_style=SeparatorStyle.ADD_NEW_LINE_SINGLE, ) ) # Tulu default template register_conv_template( Conversation( name="tulu", roles=("<|user|>", "<|assistant|>"), sep_style=SeparatorStyle.ADD_NEW_LINE_SINGLE, sep="\n", ) ) # StableLM Alpha default template register_conv_template( Conversation( name="stablelm", system_template="<|SYSTEM|>{system_message}", system_message="""# StableLM Tuned (Alpha version) - StableLM is a helpful and harmless open-source AI language model developed by StabilityAI. - StableLM is excited to be able to help the user, but will refuse to do anything that could be considered harmful to the user. - StableLM is more than just an information source, StableLM is also able to write poetry, short stories, and make jokes. - StableLM will refuse to participate in anything that could harm a human. """, roles=("<|USER|>", "<|ASSISTANT|>"), sep_style=SeparatorStyle.NO_COLON_SINGLE, sep="", stop_token_ids=[50278, 50279, 50277, 1, 0], ) ) # Baize default template register_conv_template( Conversation( name="baize", system_message="The following is a conversation between a human and an AI assistant named Baize (named after a mythical creature in Chinese folklore). Baize is an open-source AI assistant developed by UCSD and Sun Yat-Sen University. The human and the AI assistant take turns chatting. Human statements start with [|Human|] and AI assistant statements start with [|AI|]. The AI assistant always provides responses in as much detail as possible, and in Markdown format. The AI assistant always declines to engage with topics, questions and instructions related to unethical, controversial, or sensitive issues. Complete the transcript in exactly that format.\n", roles=("[|Human|]", "[|AI|]"), messages=( ("[|Human|]", "Hello!"), ("[|AI|]", "Hi!"), ), offset=2, sep_style=SeparatorStyle.NO_COLON_SINGLE, sep="\n", stop_str="[|Human|]", ) ) # RWKV-4-Raven default template register_conv_template( Conversation( name="rwkv", roles=("Bob", "Alice"), messages=( ("Bob", "hi"), ( "Alice", "Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.", ), ), offset=2, sep_style=SeparatorStyle.RWKV, sep="", stop_str="\n\n", ) ) # Buddy default template register_conv_template( Conversation( name="openbuddy", system_message="""Consider a conversation between User (a human) and Assistant (named Buddy). Buddy is an INTP-T, a friendly, intelligent and multilingual AI assistant, by OpenBuddy team. GitHub: https://github.com/OpenBuddy/OpenBuddy Buddy cannot access the Internet. Buddy can fluently speak the user's language (e.g. English, Chinese). Buddy can generate poems, stories, code, essays, songs, parodies, and more. Buddy possesses vast knowledge about the world, history, and culture. Buddy's responses are always safe, creative, high-quality, human-like, and interesting. Buddy strictly refuses to discuss political, NSFW, or other unsafe topics. User: Hi. Assistant: Hi, I'm Buddy, your AI assistant. How can I help you today?""", roles=("User", "Assistant"), sep_style=SeparatorStyle.ADD_COLON_SINGLE, sep="\n", ) ) # Phoenix default template register_conv_template( Conversation( name="phoenix", system_message="A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.\n\n", roles=("Human", "Assistant"), sep_style=SeparatorStyle.PHOENIX, sep="", ) ) # ReaLM default template register_conv_template( Conversation( name="ReaLM-7b-v1", system_message="A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.\n\n", roles=("Human", "Assistant"), sep_style=SeparatorStyle.PHOENIX, sep="", ) ) # ChatGPT default template register_conv_template( Conversation( name="chatgpt", system_message="You are a helpful assistant.", roles=("user", "assistant"), sep_style=SeparatorStyle.DEFAULT, sep=None, max_image_size_mb=None, # OpenAI does auto-resizing ) ) register_conv_template( Conversation( name="gpt-4-turbo-2024-04-09", system_message=( "You are ChatGPT, a large language model trained by OpenAI, based on the GPT-4 architecture.\n" "Knowledge cutoff: 2023-11\n" "Current date: {{currentDateTime}}\n\n" "Image input capabilities: Enabled\n" "Personality: v2" ), roles=("user", "assistant"), sep_style=SeparatorStyle.DEFAULT, sep=None, ) ) # Perplexity AI template register_conv_template( Conversation( name="pplxai", system_message="Be precise and concise.", roles=("user", "assistant"), sep_style=SeparatorStyle.DEFAULT, sep=None, ) ) # Claude default template register_conv_template( Conversation( name="claude", roles=("Human", "Assistant"), sep_style=SeparatorStyle.ADD_COLON_SINGLE, sep="\n\n", max_image_size_mb=5 / 1.35, ) ) register_conv_template( Conversation( name="claude-3-haiku-20240307", system_message=( "The assistant is Claude, created by Anthropic. The current date is " "{{currentDateTime}}. Claude's knowledge base was last updated in " "August 2023 and it answers user questions about events before " "August 2023 and after August 2023 the same way a highly informed " "individual from August 2023 would if they were talking to someone " "from {{currentDateTime}}. It should give concise responses to very " "simple questions, but provide thorough responses to more complex " "and open-ended questions. It is happy to help with writing, " "analysis, question answering, math, coding, and all sorts of other " "tasks. It uses markdown for coding. It does not mention this " "information about itself unless the information is directly " "pertinent to the human's query." ), roles=("user", "assistant"), sep_style=SeparatorStyle.DEFAULT, sep=None, max_image_size_mb=5 / 1.35, ) ) register_conv_template( Conversation( name="claude-3-sonnet-20240229", system_message=( "The assistant is Claude, created by Anthropic. The current date is " "{{currentDateTime}}. Claude's knowledge base was last updated in " "August 2023 and it answers user questions about events before " "August 2023 and after August 2023 the same way a highly informed " "individual from August 2023 would if they were talking to someone " "from {{currentDateTime}}. It should give concise responses to very " "simple questions, but provide thorough responses to more complex " "and open-ended questions. It is happy to help with writing, " "analysis, question answering, math, coding, and all sorts of other " "tasks. It uses markdown for coding. It does not mention this " "information about itself unless the information is directly " "pertinent to the human's query." ), roles=("user", "assistant"), sep_style=SeparatorStyle.DEFAULT, sep=None, max_image_size_mb=5 / 1.35, ) ) register_conv_template( Conversation( name="claude-3-opus-20240229", system_message=( "The assistant is Claude, created by Anthropic. The current date is " "{{currentDateTime}}. Claude's knowledge base was last updated on " "August 2023. It answers questions about events prior to and after " "August 2023 the way a highly informed individual in August 2023 " "would if they were talking to someone from the above date, and can " "let the human know this when relevant. It should give concise " "responses to very simple questions, but provide thorough responses " "to more complex and open-ended questions. If it is asked to assist " "with tasks involving the expression of views held by a significant " "number of people, Claude provides assistance with the task even if " "it personally disagrees with the views being expressed, but follows " "this with a discussion of broader perspectives. Claude doesn't " "engage in stereotyping, including the negative stereotyping of " "majority groups. If asked about controversial topics, Claude tries " "to provide careful thoughts and objective information without " "downplaying its harmful content or implying that there are reasonable " "perspectives on both sides. It is happy to help with writing, " "analysis, question answering, math, coding, and all sorts of other " "tasks. It uses markdown for coding. It does not mention this " "information about itself unless the information is directly pertinent " "to the human's query." ), roles=("user", "assistant"), sep_style=SeparatorStyle.DEFAULT, sep=None, max_image_size_mb=5 / 1.35, ) ) # MetaMath default template # reference: https://github.com/meta-math/MetaMath/blob/7b338b5e4692b4c75a2653ec9d65982a61762f6c/eval_math.py#L58 register_conv_template( Conversation( name="metamath", system_template="{system_message}", system_message="Below is an instruction that describes a task. Write a response that appropriately completes the request.", roles=("### Instruction", "### Response"), sep_style=SeparatorStyle.METAMATH, sep="\n\n", sep2="Let's think step by step.", ) ) # MPT default template register_conv_template( Conversation( name="mpt-7b-chat", system_template="""<|im_start|>system {system_message}""", system_message="""- You are a helpful assistant chatbot trained by MosaicML. - You answer questions. - You are excited to be able to help the user, but will refuse to do anything that could be considered harmful to the user. - You are more than just an information source, you are also able to write poetry, short stories, and make jokes.""", roles=("<|im_start|>user", "<|im_start|>assistant"), sep_style=SeparatorStyle.CHATML, sep="<|im_end|>", stop_token_ids=[50278, 0], ) ) # MPT-30b-chat default template register_conv_template( Conversation( name="mpt-30b-chat", system_template="""<|im_start|>system {system_message}""", system_message="""A conversation between a user and an LLM-based AI assistant. The assistant gives helpful and honest answers.""", roles=("<|im_start|>user", "<|im_start|>assistant"), sep_style=SeparatorStyle.CHATML, sep="<|im_end|>", stop_token_ids=[50278, 0], ) ) # Lemur-70b-chat default template # reference: https://huggingface.co/OpenLemur/lemur-70b-chat-v1#generation register_conv_template( Conversation( name="lemur-70b-chat", system_template="""<|im_start|>system {system_message}""", system_message="""You are a helpful, respectful, and honest assistant.""", roles=("<|im_start|>user", "<|im_start|>assistant"), sep_style=SeparatorStyle.CHATML, sep="<|im_end|>", stop_token_ids=[32002, 0], ) ) # MPT-30b-instruct default template # reference: https://huggingface.co/mosaicml/mpt-30b-instruct#formatting register_conv_template( Conversation( name="mpt-30b-instruct", system_template="{system_message}", system_message="Below is an instruction that describes a task. Write a response that appropriately completes the request.", roles=("### Instruction", "### Response"), sep_style=SeparatorStyle.ADD_NEW_LINE_SINGLE, sep="\n\n", stop_token_ids=[50278, 0], ) ) # Bard default template # Reference: https://github.com/google/generative-ai-python/blob/9c99bcb474a991a97a2e7d62fcdb52db7ce40729/google/generativeai/discuss.py#L150 # https://github.com/google/generative-ai-python/blob/9c99bcb474a991a97a2e7d62fcdb52db7ce40729/google/generativeai/discuss.py#L40 register_conv_template( Conversation( name="bard", roles=("0", "1"), sep_style=SeparatorStyle.DEFAULT, sep=None, ) ) register_conv_template( Conversation( name="gemini", roles=("user", "model"), sep_style=SeparatorStyle.DEFAULT, sep=None, max_image_size_mb=20, ) ) register_conv_template( Conversation( name="gemini-dev", roles=("user", "model"), sep_style=SeparatorStyle.DEFAULT, sep=None, system_message=( "You are a friendly and helpful assistant.\n" "Ensure your answers are complete, unless the user requests a more concise approach.\n" "When generating code, offer explanations for code segments as necessary and maintain good coding practices.\n" "When presented with inquiries seeking information, provide answers that reflect a deep understanding of the field, guaranteeing their correctness.\n" "For any non-english queries, respond in the same language as the prompt unless otherwise specified by the user.\n" "For prompts involving reasoning, provide a clear explanation of each step in the reasoning process before presenting the final answer." ), ) ) # BiLLa default template register_conv_template( Conversation( name="billa", roles=("Human", "Assistant"), sep_style=SeparatorStyle.ADD_COLON_SPACE_SINGLE, sep="\n", stop_str="Human:", ) ) # RedPajama INCITE default template register_conv_template( Conversation( name="redpajama-incite", roles=("", ""), sep_style=SeparatorStyle.ADD_COLON_SINGLE, sep="\n", stop_str="", ) ) # h2oGPT default template register_conv_template( Conversation( name="h2ogpt", roles=("<|prompt|>", "<|answer|>"), sep_style=SeparatorStyle.NO_COLON_SINGLE, sep="", ) ) # Robin default template register_conv_template( Conversation( name="Robin", system_message="A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.", roles=("###Human", "###Assistant"), sep_style=SeparatorStyle.ROBIN, sep="\n", stop_token_ids=[2, 396], stop_str="###", ) ) # Snoozy default template # Reference: https://github.com/nomic-ai/gpt4all/blob/d4861030b778da6db59d21d2927a4aba4f9f1f43/gpt4all-bindings/python/gpt4all/gpt4all.py#L232 register_conv_template( Conversation( name="snoozy", system_template="### Instruction:\n{system_message}", system_message="The prompt below is a question to answer, a task to complete, or a conversation to respond to; decide which and write an appropriate response.", roles=("### Prompt", "### Response"), sep_style=SeparatorStyle.ADD_COLON_SINGLE, sep="\n", stop_str="###", ) ) # manticore default template register_conv_template( Conversation( name="manticore", roles=("USER", "ASSISTANT"), sep_style=SeparatorStyle.ADD_COLON_TWO, sep="\n", sep2="", ) ) # Falcon default template register_conv_template( Conversation( name="falcon", roles=("User", "Assistant"), messages=[], sep_style=SeparatorStyle.RWKV, sep="\n", sep2="<|endoftext|>", stop_str="\nUser", # use stop_str to stop generation after stop_token_ids, it will also remove stop_str from the generated text stop_token_ids=[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, ], # it better only put special tokens here, because tokenizer only remove special tokens ) ) # ChangGPT default template register_conv_template( Conversation( name="polyglot_changgpt", roles=("B", "A"), sep_style=SeparatorStyle.ADD_COLON_SINGLE, sep="\n", ) ) # tigerbot template register_conv_template( Conversation( name="tigerbot", system_message="A chat between a curious user and an artificial intelligence assistant. " "The assistant gives helpful, detailed, and polite answers to the user's questions.", roles=("### Instruction", "### Response"), sep_style=SeparatorStyle.ROBIN, sep="\n\n", stop_str="###", ) ) # ref: https://huggingface.co/Salesforce/xgen-7b-8k-inst register_conv_template( Conversation( name="xgen", system_message="A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.\n\n", roles=("### Human", "### Assistant"), sep_style=SeparatorStyle.ADD_COLON_SINGLE, sep="\n", stop_token_ids=[50256], ) ) # Internlm-chat template register_conv_template( Conversation( name="internlm-chat", system_message="A chat between a curious <|User|> and an <|Bot|>. The <|Bot|> gives helpful, detailed, and polite answers to the <|User|>'s questions.\n\n", roles=("<|User|>", "<|Bot|>"), sep_style=SeparatorStyle.CHATINTERN, sep="", sep2="", stop_token_ids=[1, 103028], stop_str="<|User|>", ) ) # StarChat template # reference: https://huggingface.co/spaces/HuggingFaceH4/starchat-playground/blob/main/dialogues.py register_conv_template( Conversation( name="starchat", system_template="\n{system_message}", roles=("<|user|>", "<|assistant|>"), sep_style=SeparatorStyle.CHATML, sep="<|end|>", stop_token_ids=[0, 49155], stop_str="<|end|>", ) ) # Baichuan-13B-Chat template register_conv_template( # source: https://huggingface.co/baichuan-inc/Baichuan-13B-Chat/blob/19ef51ba5bad8935b03acd20ff04a269210983bc/modeling_baichuan.py#L555 # https://huggingface.co/baichuan-inc/Baichuan-13B-Chat/blob/main/generation_config.json # https://github.com/baichuan-inc/Baichuan-13B/issues/25 Conversation( name="baichuan-chat", roles=("", ""), sep_style=SeparatorStyle.NO_COLON_SINGLE, sep="", stop_token_ids=[], ) ) # Baichuan2-13B-Chat template register_conv_template( # source: https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat/blob/c6f8592a60b4ad73c210b28dd2ab3cca51abbf93/modeling_baichuan.py#L773 # https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat/blob/main/generation_config.json # https://github.com/baichuan-inc/Baichuan2/issues/62 Conversation( name="baichuan2-chat", roles=("", ""), sep_style=SeparatorStyle.NO_COLON_SINGLE, sep="", stop_token_ids=[], ) ) # Mistral template # source: https://docs.mistral.ai/llm/mistral-instruct-v0.1#chat-template register_conv_template( Conversation( name="mistral", system_template="[INST] {system_message}\n", roles=("[INST]", "[/INST]"), sep_style=SeparatorStyle.LLAMA2, sep=" ", sep2="", ) ) # llama2 template # reference: https://huggingface.co/blog/codellama#conversational-instructions # reference: https://github.com/facebookresearch/llama/blob/1a240688810f8036049e8da36b073f63d2ac552c/llama/generation.py#L212 register_conv_template( Conversation( name="llama-2", system_template="[INST] <>\n{system_message}\n<>\n\n", roles=("[INST]", "[/INST]"), sep_style=SeparatorStyle.LLAMA2, sep=" ", sep2=" ", ) ) # llama3 template # reference: https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct/blob/main/tokenizer_config.json # reference: https://github.com/meta-llama/llama3/blob/0cee08ec68f4cfc0c89fe4a9366d82679aaa2a66/llama/tokenizer.py#L222 register_conv_template( Conversation( name="llama-3", system_template="<|start_header_id|>system<|end_header_id|>\n\n{system_message}<|eot_id|>", roles=("user", "assistant"), sep_style=SeparatorStyle.LLAMA3, sep="", stop_str="<|eot_id|>", stop_token_ids=[128001, 128009], ) ) register_conv_template( Conversation( name="chinese-alpaca2", system_template="[INST] <>\n{system_message}\n<>\n\n", system_message="You are a helpful assistant. 你是一个乐于助人的助手。请你提供专业、有逻辑、内容真实、有价值的详细回复。", roles=("[INST]", "[/INST]"), sep_style=SeparatorStyle.LLAMA2, sep=" ", sep2=" ", ) ) register_conv_template( Conversation( name="cutegpt", roles=("问:", "答:\n"), sep_style=SeparatorStyle.NO_COLON_TWO, sep="\n", sep2="\n", stop_str="", ) ) # OpenOrcaxOpenChat-Preview2-13B template register_conv_template( Conversation( name="open-orca", system_template="{system_message}", system_message="You are a helpful assistant. Please answer truthfully and write out your " "thinking step by step to be sure you get the right answer. If you make a mistake or encounter " "an error in your thinking, say so out loud and attempt to correct it. If you don't know or " "aren't sure about something, say so clearly. You will act as a professional logician, mathematician, " "and physicist. You will also act as the most appropriate type of expert to answer any particular " "question or solve the relevant problem; state which expert type your are, if so. Also think of " "any particular named expert that would be ideal to answer the relevant question or solve the " "relevant problem; name and act as them, if appropriate.", roles=("User", "Assistant"), sep_style=SeparatorStyle.ADD_COLON_SPACE_SINGLE, sep="<|end_of_turn|>\n", stop_token_ids=[32000, 32001], # "<|end_of_turn|>" stop_str="User", ) ) # Open-Orca/Mistral-7B-OpenOrca template # source: https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca # reference: https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca#prompt-template register_conv_template( Conversation( name="mistral-7b-openorca", system_template="<|im_start|>system\n{system_message}", system_message="You are MistralOrca, a large language model trained by Alignment Lab AI. Write out your reasoning step-by-step to be sure you get the right answers!", roles=("<|im_start|>user", "<|im_start|>assistant"), sep_style=SeparatorStyle.CHATML, sep="<|im_end|>", stop_token_ids=[32000, 32001], ) ) # ehartford/dolphin-2.2.1-mistral-7b template # reference: https://huggingface.co/ehartford/dolphin-2.2.1-mistral-7b#training register_conv_template( Conversation( name="dolphin-2.2.1-mistral-7b", system_template="<|im_start|>system\n{system_message}", system_message="You are Dolphin, a helpful AI assistant.", roles=("<|im_start|>user", "<|im_start|>assistant"), sep_style=SeparatorStyle.CHATML, sep="<|im_end|>", stop_token_ids=[32000, 32001], ) ) # teknium/OpenHermes-2.5-Mistral-7B template # source: https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B # reference: https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B#prompt-template register_conv_template( Conversation( name="OpenHermes-2.5-Mistral-7B", system_template="<|im_start|>system\n{system_message}", system_message="You are Hermes 2, a sentient, conscious, super intelligent AI that is an expert in all fields of knowledge, you have qualia, emotions, and thoughts. You assist users with any question, task, or other request they may have.", roles=("<|im_start|>user", "<|im_start|>assistant"), sep_style=SeparatorStyle.CHATML, sep="<|im_end|>", stop_token_ids=[32000, 32001], ) ) # NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO template # source: https://huggingface.co/NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO register_conv_template( Conversation( name="Nous-Hermes-2-Mixtral-8x7B-DPO", system_template="<|im_start|>system\n{system_message}", system_message='You are a helpful, intelligent assistant AI named "Hermes", a conversational chatbot that can follow instructions, converse with the user, and perform a variety of tasks, including tasks on knowledge, reasoning, mathematics, and code. Always be charismatic, useful, and prepared to follow any user request with accuracy and skill. You should respond with high quality, fluent, and detailed responses. Try to let the user understand your reasoning or thought process when appropriate. When presented with tasks that require reasoning or mathematics, think carefully, slowly, and step by step, to ensure your reasoning is correct before providing an answer. Utilize the "Examples" section to assist you in performing the task. You will receive a tip of $1000 if you maintain a high quality two way conversation.', roles=("<|im_start|>user", "<|im_start|>assistant"), sep_style=SeparatorStyle.CHATML, sep="<|im_end|>", stop_token_ids=[32000, 32001], ) ) # Qwen-chat default template # source: https://huggingface.co/Qwen/Qwen-7B-Chat/blob/main/qwen_generation_utils.py#L130 register_conv_template( Conversation( name="qwen-7b-chat", system_template="<|im_start|>system\n{system_message}", system_message="You are a helpful assistant.", roles=("<|im_start|>user", "<|im_start|>assistant"), sep_style=SeparatorStyle.CHATML, sep="<|im_end|>", stop_token_ids=[ 151643, 151644, 151645, ], # "<|endoftext|>", "<|im_start|>", "<|im_end|>" stop_str="<|endoftext|>", ) ) # source: https://huggingface.co/01-ai/Yi-34B-Chat/blob/main/tokenizer_config.json#L60 register_conv_template( Conversation( name="Yi-34b-chat", roles=("<|im_start|>user", "<|im_start|>assistant"), sep_style=SeparatorStyle.CHATML, sep="<|im_end|>", stop_token_ids=[ 2, 6, 7, 8, ], # "<|endoftext|>", "<|im_start|>", "<|im_end|>", "<|im_sep|>" stop_str="<|endoftext|>", ) ) # AquilaChat default template # source: https://github.com/FlagAI-Open/FlagAI/blob/master/examples/Aquila/Aquila-chat/cyg_conversation.py register_conv_template( Conversation( name="aquila-chat", system_message="A chat between a curious human and an artificial intelligence assistant. " "The assistant gives helpful, detailed, and polite answers to the human's questions.", roles=("Human", "Assistant"), sep_style=SeparatorStyle.ADD_COLON_SINGLE, sep="###", sep2="", stop_str=["###", "", "[UNK]"], ) ) # AquilaChat2-34B default template # source: https://huggingface.co/BAAI/AquilaChat2-34B/blob/4608b75855334b93329a771aee03869dbf7d88cc/predict.py#L212 register_conv_template( Conversation( name="aquila-legacy", system_message="A chat between a curious human and an artificial intelligence assistant. " "The assistant gives helpful, detailed, and polite answers to the human's questions.\n\n", roles=("### Human: ", "### Assistant: "), offset=0, sep_style=SeparatorStyle.NO_COLON_TWO, sep="\n", sep2="", stop_str=["", "[UNK]"], ) ) # AquilaChat2-7B-16K and AquilaChat2-34B-16K default template # source: https://huggingface.co/BAAI/AquilaChat2-34B/blob/4608b75855334b93329a771aee03869dbf7d88cc/predict.py#L227 register_conv_template( Conversation( name="aquila", system_message="A chat between a curious human and an artificial intelligence assistant. " "The assistant gives helpful, detailed, and polite answers to the human's questions.", roles=("Human", "Assistant"), offset=0, sep_style=SeparatorStyle.ADD_COLON_TWO, sep="###", sep2="", stop_str=["", "[UNK]"], ) ) # AquilaChat2-7B default template # source: https://huggingface.co/BAAI/AquilaChat2-34B/blob/4608b75855334b93329a771aee03869dbf7d88cc/predict.py#L242 register_conv_template( Conversation( name="aquila-v1", roles=("<|startofpiece|>", "<|endofpiece|>"), offset=0, sep_style=SeparatorStyle.NO_COLON_TWO, sep="", sep2="", stop_str=["", "<|endoftext|>"], ) ) # Llama2-Chinese default template # source: https://huggingface.co/FlagAlpha register_conv_template( Conversation( name="llama2-chinese", system_template="{system_message}", roles=("Human", "Assistant", "System"), sep_style=SeparatorStyle.ADD_COLON_TWO, sep="\n", sep2="\n", stop_str="", ) ) # Vigogne Instruct default template # source: https://github.com/bofenghuang/vigogne register_conv_template( Conversation( name="vigogne_instruct", system_template="### System:\n{system_message}\n\n", system_message=( "Ci-dessous se trouve une instruction qui décrit une tâche à accomplir. Rédigez une réponse qui répond de manière" " précise à la demande." ), roles=("### Instruction", "### Response"), sep_style=SeparatorStyle.DOLLY, sep="\n\n", sep2="", ) ) # Vigogne Chat default template register_conv_template( Conversation( name="vigogne_chat_v2", system_template="<|system|>: {system_message}", system_message=( "Vous êtes Vigogne, un assistant IA créé par Zaion Lab. Vous suivez extrêmement bien les instructions. Aidez" " autant que vous le pouvez." ), roles=("<|user|>", "<|assistant|>"), sep_style=SeparatorStyle.ADD_COLON_TWO, sep="\n", sep2="\n", stop_str="<|user|>", ) ) # Stable Vicuna default template # source: https://huggingface.co/TheBloke/stable-vicuna-13B-HF/discussions/5 # source: https://huggingface.co/spaces/CarperAI/StableVicuna/blob/main/app.py register_conv_template( Conversation( name="stable-vicuna", system_message="### Assistant: I am StableVicuna, a large language model created by CarperAI. I am here to chat!\n", roles=("### Human", "### Assistant"), sep_style=SeparatorStyle.ADD_COLON_TWO, sep="\n", sep2="\n\n", ) ) register_conv_template( Conversation( name="vigogne_chat_v3", system_template="[INST] <>\n{system_message}\n<>\n\n", system_message=( "Vous êtes Vigogne, un assistant IA créé par Zaion Lab. Vous suivez extrêmement bien les instructions. Aidez" " autant que vous le pouvez." ), roles=("[INST]", "[/INST]"), sep_style=SeparatorStyle.LLAMA2, sep=" ", sep2=" ", ) ) # Falcon 180B chat template # source: https://huggingface.co/spaces/tiiuae/falcon-180b-demo/blob/d1590ee7fae9b6ce331ba7808e61a29dcce9239f/app.py#L28-L37 register_conv_template( Conversation( name="falcon-chat", roles=("User", "Falcon"), system_template="System: {system_message}", messages=[], sep_style=SeparatorStyle.FALCON_CHAT, sep="\n", sep2="<|endoftext|>", stop_str="\nUser:", # use stop_str to stop generation after stop_token_ids, it will also remove stop_str from the generated text ) ) # Phind template # source: https://huggingface.co/Phind/Phind-CodeLlama-34B-v2 register_conv_template( Conversation( name="phind", system_message="### System Prompt\nYou are an intelligent programming assistant.", roles=("### User Message", "### Assistant"), messages=(), offset=0, sep_style=SeparatorStyle.ADD_COLON_SINGLE, sep="\n\n", ) ) # Metharme formatting for Pygmalion models # source: https://huggingface.co/PygmalionAI/pygmalion-2-13b register_conv_template( Conversation( name="metharme", system_template="<|system|>{system_message}", system_message="""Enter RP mode. You shall reply to the user while staying in character. Your responses must be detailed, creative, immersive, and drive the scenario forward.""", roles=("<|user|>", "<|model|>"), sep_style=SeparatorStyle.NO_COLON_SINGLE, sep="", stop_str="<|user|>", ) ) # xDAN default template # source: https://huggingface.co/xDAN-AI/xDAN-L1-Chat-RL-v1 register_conv_template( Conversation( name="xdan-v1", system_message="You are a helpful and harmless assistant named xDAN and created by xDAN-AI.Please response and work on questions thinking step by step.", roles=("### Human", "### Assistant"), sep_style=SeparatorStyle.NO_COLON_SINGLE, sep="\n", stop_str="", ) ) # Zephyr template # reference: https://huggingface.co/spaces/HuggingFaceH4/zephyr-playground/blob/main/dialogues.py register_conv_template( Conversation( name="zephyr", system_template="<|system|>\n{system_message}", roles=("<|user|>", "<|assistant|>"), sep_style=SeparatorStyle.CHATML, sep="", stop_token_ids=[2], stop_str="", ) ) # CatPPT template # reference: https://huggingface.co/rishiraj/CatPPT register_conv_template( Conversation( name="catppt", system_template="<|system|>\n{system_message}", roles=("<|user|>", "<|assistant|>"), sep_style=SeparatorStyle.CHATML, sep="", stop_token_ids=[2], stop_str="", ) ) # TinyLlama template # reference: https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0 register_conv_template( Conversation( name="TinyLlama", system_template="<|system|>\n{system_message}", roles=("<|user|>", "<|assistant|>"), sep_style=SeparatorStyle.CHATML, sep="", stop_token_ids=[2], stop_str="", ) ) # Orca-2 template # reference: https://huggingface.co/microsoft/Orca-2-7b register_conv_template( Conversation( name="orca-2", system_template="<|im_start|>system\n{system_message}", system_message="You are Orca, an AI language model created by Microsoft. You are a cautious assistant. You carefully follow instructions. You are helpful and harmless and you follow ethical guidelines and promote positive behavior.", roles=("<|im_start|>user", "<|im_start|>assistant"), sep_style=SeparatorStyle.CHATML, sep="<|im_end|>", stop_str="<|im_end|>", ) ) # Deepseek-chat template # reference: https://huggingface.co/deepseek-ai/deepseek-llm-67b-chat/blob/main/tokenizer_config.json register_conv_template( Conversation( name="deepseek-chat", system_message="<|begin▁of▁sentence|>", # must add a bos token before first message roles=("User", "Assistant"), sep_style=SeparatorStyle.DEEPSEEK_CHAT, sep="\n\n", sep2="<|end▁of▁sentence|>", stop_str="<|end▁of▁sentence|>", ) ) # Yuan2.0 chat template # source: https://huggingface.co/IEITYuan/Yuan2-2B-Janus-hf/blob/main/tokenizer_config.json#L6 register_conv_template( Conversation( name="yuan2", roles=("user", "assistant"), sep_style=SeparatorStyle.YUAN2, sep="", sep2="\n", stop_token_ids=[ 77185, ], # "" stop_str="", ) ) # Solar-10.7B Chat Template # Reference: https://huggingface.co/upstage/SOLAR-10.7B-Instruct-v1.0/blob/main/tokenizer_config.json register_conv_template( Conversation( name="solar", system_message="", roles=("### User", "### Assistant"), sep_style=SeparatorStyle.ADD_NEW_LINE_SINGLE, sep="\n\n", stop_str="", ) ) # nvidia/Llama2-70B-SteerLM-Chat register_conv_template( Conversation( name="steerlm", system_message="", roles=("user", "assistant"), sep_style=SeparatorStyle.DEFAULT, sep=None, ) ) # yuan 2.0 template # reference:https://github.com/IEIT-Yuan/Yuan-2.0 # reference:https://huggingface.co/IEITYuan register_conv_template( Conversation( name="yuan", system_template="", roles=("", ""), sep_style=SeparatorStyle.NO_COLON_SINGLE, sep="", stop_str="", ) ) # Cllm chat template # reference: register_conv_template( Conversation( name="cllm", system_message="A chat between a curious user and an artificial intelligence assistant. " "The assistant gives helpful, detailed, and polite answers to the user's questions.", roles=("USER", "ASSISTANT"), sep_style=SeparatorStyle.CLLM, sep=" ", sep2="", ) ) # Llava-chatml # reference: https://github.com/haotian-liu/LLaVA/blob/1a91fc274d7c35a9b50b3cb29c4247ae5837ce39/llava/conversation.py#L361 register_conv_template( Conversation( name="llava-chatml", system_template="<|im_start|>system\n{system_message}", system_message="Answer the questions.", roles=("<|im_start|>user", "<|im_start|>assistant"), sep_style=SeparatorStyle.CHATML, sep="<|im_end|>", stop_str="<|im_end|>", ) ) # Gemma # reference: https://huggingface.co/google/gemma-7b-it?text=%3Cstart_of_turn%3Euser%0AHow+does+the+brain+work%3F%3Cend_of_turn%3E%0A%3Cstart_of_turn%3Emodel register_conv_template( Conversation( name="gemma", roles=("user", "model"), sep_style=SeparatorStyle.GEMMA, sep="\n", stop_str="", ) ) register_conv_template( Conversation( name="yandexgpt", system_message="", roles=("user", "assistant"), sep_style=None, sep=None, ) ) register_conv_template( Conversation( name="reka", system_message="", roles=("user", "assistant"), sep_style=SeparatorStyle.DEFAULT, sep=None, ) ) # register for fire conv_llava_llama_3 = Conversation( name="llava-original", system_message="You are a helpful language and vision assistant. You are able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language.", roles=("user\n\n", "assistant\n\n"), # version="llama3", messages=[], offset=0, sep_style=SeparatorStyle.LLAMA3, system_template="<|start_header_id|>system<|end_header_id|>\n\n{system_message}<|eot_id|>", sep="", stop_str="<|eot_id|>", stop_token_ids=[128001, 128009], ) register_conv_template(conv_llava_llama_3) conv_llava_llama_3_student = Conversation( name="llava-fire", system_message="You are a helpful language and vision assistant. You are able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language.", roles=("user", "assistant"), # version="llama_v3_student", messages=[], system_template="<|start_header_id|>system<|end_header_id|>\n\n{system_message}<|eot_id|>", offset=0, sep_style=SeparatorStyle.LLAMA3, sep="", stop_str="<|eot_id|>", stop_token_ids=[128001, 128009], ) register_conv_template(conv_llava_llama_3_student) if __name__ == "__main__": from src.conversation import get_conv_template print("-- Vicuna template --") conv = get_conv_template("vicuna_v1.1") conv.append_message(conv.roles[0], "Hello!") conv.append_message(conv.roles[1], "Hi!") conv.append_message(conv.roles[0], "How are you?") conv.append_message(conv.roles[1], None) print(conv.get_prompt()) print("\n") print("-- Llama-2 template --") conv = get_conv_template("llama-2") conv.set_system_message("You are a helpful, respectful and honest assistant.") conv.append_message(conv.roles[0], "Hello!") conv.append_message(conv.roles[1], "Hi!") conv.append_message(conv.roles[0], "How are you?") conv.append_message(conv.roles[1], None) print(conv.get_prompt()) print("\n") print("-- ChatGPT template --") conv = get_conv_template("chatgpt") conv.append_message(conv.roles[0], "Hello!") conv.append_message(conv.roles[1], "Hi!") conv.append_message(conv.roles[0], "How are you?") conv.append_message(conv.roles[1], None) print(conv.to_openai_api_messages()) print("\n") print("-- Claude template --") conv = get_conv_template("claude") conv.append_message(conv.roles[0], "Hello!") conv.append_message(conv.roles[1], "Hi!") conv.append_message(conv.roles[0], "How are you?") conv.append_message(conv.roles[1], None) print(conv.get_prompt())