File size: 21,659 Bytes
9de012e
 
 
 
 
 
 
 
 
 
 
 
 
587ae20
9de012e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
109f057
9de012e
 
 
 
109f057
9de012e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
109f057
 
 
 
 
9de012e
 
 
 
587ae20
9de012e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
587ae20
9de012e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
import contextlib
import clip
import torch
import torch.nn as nn
from einops import rearrange
from peft import LoraConfig, get_peft_model
from transformers import AutoModelForCausalLM, AutoTokenizer, LlamaForCausalLM, LlamaTokenizer
from leo.img_encoder import GridFeatureExtractor2D
from leo.pcd_encoder import OSE3D
from leo.grounding_head import SequentialGroundHead
from leo.utils import get_mlp_head


def maybe_autocast(model, dtype='bf16', enabled=True):
    # if on cpu, don't use autocast
    # if on gpu, use autocast with dtype if provided, otherwise use torch.float16
    enable_autocast = model.device != torch.device('cpu')

    if dtype == 'bf16':
        dtype = torch.bfloat16
    elif dtype == 'fp16':
        dtype == torch.float16
    else:
        dtype = torch.float32

    if enable_autocast:
        return torch.cuda.amp.autocast(dtype=dtype, enabled=enabled)
    else:
        return contextlib.nullcontext()

def disabled_train(self, mode=True):
    """
    Overwrite model.train with this function to make sure train/eval mode does not change anymore
    """
    return self


class SequentialGrounder(torch.nn.Module):
    def __init__(self,predict_mode=False):
        super().__init__()
        cfg = {
            "launch_mode": "hf",
            "model": {
                "llm": {
                    "name": "Vicuna7B",
                    "cfg_path": "/scratch/generalvision/vicuna-7b",
                    "hf_cfg_path": "huangjy-pku/vicuna-7b",
                    "truncation_side": "right",
                    "max_context_len": 256,
                    "max_out_len": 256,
                    "lora": {
                        "flag": True,
                        "rank": 16,
                        "alpha": 16,
                        "dropout": 0.0,
                        "target_modules": ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'gate_proj', 'up_proj', 'down_proj'],
                    },
                },
                "clip_txt_guidance": {
                    "flag": False,
                    "clip_out_dim": 1024,
                },
            },
        }

        self.predict_mode = predict_mode
        
        # LLM
        llm_name = cfg['model']['llm']['name']
        if cfg['launch_mode'] == 'hf':
            llm_cfg_path = cfg['model']['llm']['hf_cfg_path']
        else:
            llm_cfg_path = cfg['model']['llm']['cfg_path']
        llm_truncation_side = 'right'
        if 'vicuna' in llm_name.lower():
            self.llm_tokenizer = LlamaTokenizer.from_pretrained(llm_cfg_path, truncation_side=llm_truncation_side)
            self.llm_tokenizer.add_special_tokens({'pad_token': '[PAD]'})
            self.llm_model = LlamaForCausalLM.from_pretrained(llm_cfg_path, torch_dtype=torch.float16)
            self.llm_model.resize_token_embeddings(len(self.llm_tokenizer))
        else:
            self.llm_tokenizer = AutoTokenizer.from_pretrained(llm_cfg_path, truncation_side=llm_truncation_side)
            self.llm_model = AutoModelForCausalLM.from_pretrained(llm_cfg_path, torch_dtype=torch.float16)

        for param in self.llm_model.parameters():
            param.requires_grad = False
        self.llm_model.eval()
        self.llm_model.train = disabled_train

        # 2D vision
        self.img_encoder = GridFeatureExtractor2D()
        self.img_proj = nn.Linear(
            self.img_encoder.out_channels, self.llm_model.config.hidden_size
        )

        # 3D vision
        self.pcd_encoder = OSE3D()
        self.pcd_proj = nn.Linear(256, self.llm_model.config.hidden_size)

        # type embedding
        # self.img_type_embed = nn.Parameter(torch.zeros(self.llm_model.config.hidden_size), requires_grad=True)
        # self.pcd_type_embed = nn.Parameter(torch.zeros(self.llm_model.config.hidden_size), requires_grad=True)

        # LoRA
        if cfg['model']['llm']['lora']['flag']:
            lora_config = LoraConfig(
                r=cfg['model']['llm']['lora']['rank'],
                lora_alpha=cfg['model']['llm']['lora']['alpha'],
                target_modules=cfg['model']['llm']['lora']['target_modules'],
                lora_dropout=cfg['model']['llm']['lora']['dropout'],
                bias='none',
                modules_to_save=[],
            )
            self.llm_model = get_peft_model(self.llm_model, peft_config=lora_config)

        self.max_context_len = 256
        self.max_out_len = 256

        # additional text x multi-modal tokens fusion
        self.clip_txt_guidance = cfg['model']['clip_txt_guidance']['flag']
        if self.clip_txt_guidance:
            self.clip_model = clip.load('RN50')[0]
            for param in self.clip_model.parameters():
                param.requires_grad = False
            self.clip_model.eval()
            self.clip_model.train = disabled_train
            self.clip_proj = nn.Linear(cfg['clip_txt_guidance']['clip_out_dim'], self.llm_model.config.hidden_size)
        
        # grounding head
        self.ground_head = SequentialGroundHead()
        self.obj_cls_head = get_mlp_head(4096, 768, 607, 0.3)
        self.pre_grounding = True

    @property
    def device(self):
        return list(self.parameters())[0].device

    def build_right_justified_sequence(self, data_dict):
        """
        Concat six sequences: `prompt_before_obj`, `prompt_middle_1`, `img_tokens`, `prompt_middle_2`, `obj_tokens`, `prompt_after_obj`.
        Return right justified sequence for causal LM: <pad>, <role/situation>, <img>, <objs>, <instruction>.
        """
        device = self.device
        bs = len(data_dict['prompt_before_obj'])

        self.llm_tokenizer.padding_side = 'left'
        text_input_tokens_pre = self.llm_tokenizer(
            data_dict['prompt_before_obj'],
            return_tensors='pt',
            padding='longest'
        ).to(device)   # [PAD, BOS, tokens], (B, T1)

        text_input_tokens_mid1 = self.llm_tokenizer(
            data_dict['prompt_middle_1'],
            return_tensors='pt',
            padding='longest'
        ).to(device)

        img_tokens = data_dict['img_tokens'].to(device)
        img_masks = data_dict['img_masks'].to(device)
        img_masks = img_masks.reshape(-1, 1).repeat(1, img_tokens.size(1))

        text_input_tokens_mid2 = self.llm_tokenizer(
            data_dict['prompt_middle_2'],
            return_tensors='pt',
            padding='longest'
        ).to(device)

        obj_tokens = data_dict['obj_tokens'].to(device)
        obj_masks = data_dict['obj_masks'].to(device)

        # additional clip fusion
        if self.clip_txt_guidance:
            with torch.no_grad():
                clip_fts = self.clip_model.encode_text(
                    clip.tokenize(data_dict['prompt_after_obj'], truncate=True).to(device)
                )
            clip_fts = self.clip_proj(clip_fts)
            # B, N, C
            img_tokens = torch.einsum('bnc,bc->bnc', img_tokens, clip_fts)
            obj_tokens = torch.einsum('bnc,bc->bnc', obj_tokens, clip_fts)

        self.llm_tokenizer.padding_side = 'right'   # no need to be 'left', as padding tokens will be shifted
        self.llm_tokenizer.truncation_side = 'left'   # truncate history
        text_input_tokens_post = self.llm_tokenizer(
            data_dict['prompt_after_obj'],
            return_tensors='pt',
            padding='longest',
            truncation=True,
            max_length=self.max_context_len,
        ).to(device)   # [BOS, tokens, PAD], (B, T3)

        assert text_input_tokens_mid1.attention_mask.all() and text_input_tokens_mid2.attention_mask.all(), \
               "prompt_middle should be the same and thus no padding"

        # remove bos, make "tokenize subseq and concat" equivalent to "tokenize the whole seq"
        text_input_tokens_mid1.input_ids = text_input_tokens_mid1.input_ids[:, 1:]
        text_input_tokens_mid1.attention_mask = text_input_tokens_mid1.attention_mask[:, 1:]
        text_input_tokens_mid2.input_ids = text_input_tokens_mid2.input_ids[:, 1:]
        text_input_tokens_mid2.attention_mask = text_input_tokens_mid2.attention_mask[:, 1:]
        text_input_tokens_post.input_ids = text_input_tokens_post.input_ids[:, 1:]
        text_input_tokens_post.attention_mask = text_input_tokens_post.attention_mask[:, 1:]
        for i in range(bs):
            if not img_masks[i].any():
                # no image input, also mask the text prompt for image tokens
                text_input_tokens_mid1.attention_mask[i].fill_(0)

        inputs_embeds_pre = self.llm_model.get_input_embeddings()(text_input_tokens_pre.input_ids)
        inputs_embeds_mid1 = self.llm_model.get_input_embeddings()(text_input_tokens_mid1.input_ids)
        inputs_embeds_mid2 = self.llm_model.get_input_embeddings()(text_input_tokens_mid2.input_ids)
        inputs_embeds_post = self.llm_model.get_input_embeddings()(text_input_tokens_post.input_ids)

        # since img_tokens, prompt_mid, obj_tokens are fixed length without padding, we concat them first
        inputs_embeds_mid = torch.cat([inputs_embeds_mid1, img_tokens, inputs_embeds_mid2, obj_tokens], dim=1)
        attn_mask_mid = torch.cat(
            [text_input_tokens_mid1.attention_mask, img_masks, text_input_tokens_mid2.attention_mask, obj_masks],
            dim=1,
        )

        post_pad_length = torch.logical_not(text_input_tokens_post.attention_mask).sum(-1)

        bs, l1, hidden_dim = inputs_embeds_pre.shape
        _, l2, _ = inputs_embeds_mid.shape
        _, l3, _ = inputs_embeds_post.shape

        inputs_embeds = torch.zeros(bs, l1+l2+l3, hidden_dim).type(inputs_embeds_pre.dtype).to(device)
        attention_mask = torch.zeros(bs, l1+l2+l3).type(obj_masks.dtype).to(device)

        # assign by chunks
        for i in range(bs):
            post_pad_len = post_pad_length[i]

            if post_pad_len > 0:
                inputs_embeds[i, :post_pad_len] = inputs_embeds_post[i, -post_pad_len:]
                attention_mask[i, :post_pad_len] = 0
                inputs_embeds[i, post_pad_len+l1+l2:] = inputs_embeds_post[i, :-post_pad_len]
                attention_mask[i, post_pad_len+l1+l2:] = 1
            else:
                # no padding
                inputs_embeds[i, -l3:] = inputs_embeds_post[i]
                attention_mask[i, -l3:] = 1

            inputs_embeds[i, post_pad_len: post_pad_len+l1] = inputs_embeds_pre[i]
            attention_mask[i, post_pad_len: post_pad_len+l1] = text_input_tokens_pre.attention_mask[i]

            inputs_embeds[i, post_pad_len+l1: post_pad_len+l1+l2] = inputs_embeds_mid[i]
            attention_mask[i, post_pad_len+l1: post_pad_len+l1+l2] = attn_mask_mid[i]

        return inputs_embeds, attention_mask, (l1, l2, l3)

    def forward(self, data_dict):
        if self.predict_mode:
            return self.generate(data_dict=data_dict)
        """
        data_dict requires keys:
        # input
        prompt_before_obj: list of str, (B,)
        prompt_middle_1: list of str, (B,)
        prompt_middle_2: list of str, (B,)
        prompt_after_obj: list of str, (B,)
        obj_fts: (B, N, P, 6), xyz + rgb
        obj_masks: (B, N), 1 valid and 0 masked
        obj_locs: (B, N, 6), xyz + whd
        anchor_locs: (B, 3)
        anchor_orientation: (B, C)
        img_fts: (B, 3, H, W), rgb
        img_masks: (B, 1), 1 valid and 0 masked
        # output
        output_gt: list of str, (B,)
        """
        device = self.device
        bs = len(data_dict['prompt_after_obj'])
        data_dict['bs'] = bs
        if 'obj_tokens' not in data_dict:
            # obtain obj tokens
            data_dict = self.pcd_encoder(data_dict)
            # TO CHANGE FOR DEBUG
            #self.llm_model.float()
            #data_dict['obj_tokens'] = torch.zeros((data_dict['obj_locs'].shape[0], data_dict['obj_locs'].shape[1], 256)).to(device=device)

        data_dict['obj_tokens'] = self.pcd_proj(data_dict['obj_tokens'].to(device))
        # data_dict['obj_tokens'] = data_dict['obj_tokens'] + self.pcd_type_embed

        data_dict['img_tokens'] = self.img_proj(self.img_encoder(data_dict['img_fts']))
        # data_dict['img_tokens'] = data_dict['img_tokens'] + self.img_type_embed
        
        # build input embdes and record prompt position
        inputs_embeds, attention_mask, input_length = self.build_right_justified_sequence(data_dict=data_dict)
        obj_token_length = data_dict['obj_masks'].shape[1]
        # (B, T1+O+T2, D), (B, T1+O+T2)

        self.llm_tokenizer.padding_side = 'right'
        self.llm_tokenizer.truncation_side = 'right'
        text_output_tokens = self.llm_tokenizer(
            [t + self.llm_tokenizer.eos_token for t in data_dict['output_gt']],
            return_tensors='pt',
            padding='longest',
            truncation=True,
            max_length=self.max_out_len,
        ).to(device)
        # record position for special token [SOS]
        grd_token_id = self.llm_tokenizer.convert_tokens_to_ids(['<s>'])[0]
        out_input_ids_remove_first_sos = text_output_tokens.input_ids.clone()
        out_input_ids_remove_first_sos[:, 0] = -100
        grd_ind_0, grd_ind_1 = (out_input_ids_remove_first_sos == grd_token_id).nonzero(as_tuple=True)
        

        text_output_embeds = self.llm_model.get_input_embeddings()(text_output_tokens.input_ids)   # (B, T3, D)
        inputs_embeds = torch.cat([inputs_embeds, text_output_embeds], dim=1)   # (B, T1+O+T2+T3, D)
        attention_mask = torch.cat([attention_mask, text_output_tokens.attention_mask], dim=1)   # (B, T1+O+T2+T3)

        # construct targets
        targets = torch.zeros_like(attention_mask).long().fill_(-100)   # (B, T1+O+T2+T3)

        # only apply loss to answer tokens
        targets_idx = text_output_tokens.attention_mask.bool()
        targets[:, -targets_idx.shape[1]:][targets_idx] = text_output_tokens.input_ids[targets_idx]

        # do not predict bos token, regard it as condition instead
        targets[:, -targets_idx.shape[1]] = -100

        with maybe_autocast(self):
            outputs = self.llm_model(
                inputs_embeds=inputs_embeds,
                attention_mask=attention_mask,
                return_dict=True,
                output_hidden_states=True,
            )

        logits = outputs.logits.float()
        last_hidden_state = outputs.hidden_states[-1]

        # different from the loss inside `llm_model.forward`, here we take mean of each sequence instead of sum
        shift_logits = logits[..., :-1, :].contiguous()
        shift_labels = targets[..., 1:].contiguous()
        num_tokens_for_loss = (shift_labels >= 0).int().sum(1)   # (B,)

        shift_logits = rearrange(shift_logits, 'b t v -> (b t) v')
        shift_labels = rearrange(shift_labels, 'b t -> (b t)')

        shift_labels = shift_labels.to(shift_logits.device)
        
        # record for llm loss
        data_dict['llm_logits'] = shift_logits
        data_dict['llm_labels'] = shift_labels
        data_dict['num_tokens_for_loss'] = num_tokens_for_loss
        
        # record for grounding loss
        grd_list = []
        obj_list = []
        mask_list = []
        for step in range(len(grd_ind_0)):
            batch_ind = grd_ind_0[step]
            grd_token_ind = grd_ind_1[step]
            if self.pre_grounding:
                output_obj_tokens = data_dict['obj_tokens'][batch_ind]
            else:
                output_obj_tokens = last_hidden_state[batch_ind, input_length[0] + input_length[1] - obj_token_length : input_length[0] + input_length[1], :]
            output_grd_tokens = last_hidden_state[batch_ind, sum(input_length) + grd_token_ind:sum(input_length) + grd_token_ind + 1, :]
            grd_list.append(output_grd_tokens)
            obj_list.append(output_obj_tokens)
            mask_list.append(data_dict['obj_masks'][batch_ind])
        output_obj = torch.stack(obj_list).float()
        output_grd = torch.stack(grd_list).float()
        data_dict['ground_logits'] = self.ground_head(output_obj, output_grd, torch.stack(mask_list))
        # data_dict['ground_label'] = torch.concat(data_dict['tgt_object_id'], dim=0)
        
        # record for cls loss
        #obj_cls_post_embeds = last_hidden_state[:, input_length[0] + input_length[1] - obj_token_length : input_length[0] + input_length[1], :].float()
        obj_cls_post_embeds = data_dict['obj_tokens'].float()
        data_dict['obj_cls_post_logits'] = self.obj_cls_head(obj_cls_post_embeds)
        return data_dict

    @torch.no_grad()
    def generate(
        self,
        data_dict,
        use_nucleus_sampling=False,
        num_beams=5,
        max_length=256,
        min_length=1,
        top_p=0.9,
        repetition_penalty=6.0,
        length_penalty=1,
        num_captions=1,
        temperature=1,
    ):
        """
        data_dict requires the same keys as forward() except output_gt
        """
        device = self.device
        bs = len(data_dict['prompt_after_obj'])
        data_dict['bs'] = bs
        if 'obj_tokens' not in data_dict:
            # obtain obj tokens
            data_dict = self.pcd_encoder(data_dict)
            # TO CHANGE FOR DEBUG
            #self.llm_model.float()
            #data_dict['obj_tokens'] = torch.zeros((data_dict['obj_locs'].shape[0], data_dict['obj_locs'].shape[1], 256)).to(device=device)

        data_dict['obj_tokens'] = self.pcd_proj(data_dict['obj_tokens'].to(device))
        # data_dict['obj_tokens'] = data_dict['obj_tokens'] + self.pcd_type_embed

        data_dict['img_tokens'] = self.img_proj(self.img_encoder(data_dict['img_fts']))
        # data_dict['img_tokens'] = data_dict['img_tokens'] + self.img_type_embed

        inputs_embeds, attention_mask, input_length = self.build_right_justified_sequence(data_dict=data_dict)
        obj_token_length = data_dict['obj_masks'].shape[1]
        
        # give bos token as condition
        bos_tokens = self.llm_tokenizer(
            [self.llm_tokenizer.bos_token] * bs,
            return_tensors='pt',
        ).to(device)
        bos_tokens_ids = bos_tokens.input_ids[:, 0:1]   # (B, 1)
        bos_tokens_attn = bos_tokens.attention_mask[:, 0:1]   # (B, 1)

        # prepare a `bos_token`
        bos_embeds = self.llm_model.get_input_embeddings()(bos_tokens_ids)   # (B, 1, D)
        inputs_embeds = torch.cat([inputs_embeds, bos_embeds], dim=1)   # (B, T1+O+T2+1, D)
        attention_mask = torch.cat([attention_mask, bos_tokens_attn], dim=1)   # (B, T1+O+T2+1)

        with maybe_autocast(self):
            outputs = self.llm_model.generate(
                inputs_embeds=inputs_embeds,
                attention_mask=attention_mask,
                do_sample=use_nucleus_sampling,
                top_p=top_p,
                temperature=temperature,
                num_beams=num_beams,
                max_length=max_length,
                min_length=min_length,
                repetition_penalty=repetition_penalty,
                length_penalty=length_penalty,
                num_return_sequences=num_captions,
                return_dict_in_generate=True,
                output_hidden_states=True,
                output_scores=True
            )
        # note output_ids_idx - 1 = step idx, because we do not preduct [BOS] 
        beam_indices = outputs.beam_indices # bs x step, beam indices range (bsxbeam)
        scores = outputs.scores # step x (bs x beam) x vocab
        hidden_states = outputs.hidden_states # step x layer x (bs x beam) x token_num x hidden_dim
        outputs = outputs.sequences # bs x output_ids
        outputs[outputs == self.llm_tokenizer.unk_token_id] = self.llm_tokenizer.eos_token_id
        # data_dict['output_tokens'] = outputs   # unable to gather variable-length tensors
        
        # record for grounding
        grd_token_id = self.llm_tokenizer.convert_tokens_to_ids(['<s>'])[0]
        out_input_ids_remove_first_sos = outputs.clone()
        out_input_ids_remove_first_sos[:, 0] = -100
        grd_ind_0, grd_ind_1 = (out_input_ids_remove_first_sos == grd_token_id).nonzero(as_tuple=True)
        
        grd_list = []
        grd_batch_ind_list = []
        obj_list = []
        mask_list = []
        if len(grd_ind_0) > 0:
            for step in range(len(grd_ind_0)):
                batch_ind = grd_ind_0[step]
                grd_token_ind = grd_ind_1[step]
                #output_obj_tokens = last_hidden_state[batch_ind, input_length[0] + input_length[1] - obj_token_length : input_length[0] + input_length[1], :]
                output_obj_tokens = data_dict['obj_tokens'][batch_ind]
                output_grd_tokens = hidden_states[grd_token_ind-1][-1][beam_indices[batch_ind, grd_token_ind-1]][-1].unsqueeze(0) # grd_token_ind - 1 because first token is sos
                grd_list.append(output_grd_tokens)
                grd_batch_ind_list.append(batch_ind)
                obj_list.append(output_obj_tokens)
                mask_list.append(data_dict['obj_masks'][batch_ind])
            output_obj = torch.stack(obj_list).float()
            output_grd = torch.stack(grd_list).float()
            data_dict['ground_logits'] = self.ground_head(output_obj, output_grd, torch.stack(mask_list)) 
        else:
            data_dict['ground_logits'] = None
        # data_dict['ground_label'] = torch.concat(data_dict['tgt_object_id'], dim=0)
        data_dict['grd_batch_ind_list'] = grd_batch_ind_list
        
        output_txt = self.llm_tokenizer.batch_decode(outputs, skip_special_tokens=True)
        output_txt = [txt.strip() for txt in output_txt]
        data_dict['output_txt'] = output_txt
        return data_dict