File size: 7,572 Bytes
9de012e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import csv
import copy
import torch
import einops
import numpy as np
from torch import nn
import torch.nn.functional as F



def get_activation_fn(activation_type):
    if activation_type not in ["relu", "gelu", "glu"]:
        raise RuntimeError(f"activation function currently support relu/gelu, not {activation_type}")
    return getattr(F, activation_type)

def get_mlp_head(input_size, hidden_size, output_size, dropout=0):
    return nn.Sequential(*[
        nn.Linear(input_size, hidden_size),
        nn.ReLU(),
        nn.LayerNorm(hidden_size, eps=1e-12),
        nn.Dropout(dropout),
        nn.Linear(hidden_size, output_size)
    ])

def layer_repeat(module, N, share_layer=False):
    if share_layer:
        return nn.ModuleList([module] * N)
    else:
        return nn.ModuleList([copy.deepcopy(module) for _ in range(N - 1)] + [module])


def calc_pairwise_locs(obj_centers, obj_whls, eps=1e-10, pairwise_rel_type='center', spatial_dist_norm=True,
                       spatial_dim=5):
    if pairwise_rel_type == 'mlp':
        obj_locs = torch.cat([obj_centers, obj_whls], 2)
        pairwise_locs = torch.cat(
            [einops.repeat(obj_locs, 'b l d -> b l x d', x=obj_locs.size(1)),
             einops.repeat(obj_locs, 'b l d -> b x l d', x=obj_locs.size(1))],
            dim=3
        )
        return pairwise_locs

    pairwise_locs = einops.repeat(obj_centers, 'b l d -> b l 1 d') \
                    - einops.repeat(obj_centers, 'b l d -> b 1 l d')
    pairwise_dists = torch.sqrt(torch.sum(pairwise_locs ** 2, 3) + eps)  # (b, l, l)
    if spatial_dist_norm:
        max_dists = torch.max(pairwise_dists.view(pairwise_dists.size(0), -1), dim=1)[0]
        norm_pairwise_dists = pairwise_dists / einops.repeat(max_dists, 'b -> b 1 1')
    else:
        norm_pairwise_dists = pairwise_dists

    if spatial_dim == 1:
        return norm_pairwise_dists.unsqueeze(3)

    pairwise_dists_2d = torch.sqrt(torch.sum(pairwise_locs[..., :2] ** 2, 3) + eps)
    if pairwise_rel_type == 'center':
        pairwise_locs = torch.stack(
            [norm_pairwise_dists, pairwise_locs[..., 2] / pairwise_dists,
             pairwise_dists_2d / pairwise_dists, pairwise_locs[..., 1] / pairwise_dists_2d,
             pairwise_locs[..., 0] / pairwise_dists_2d],
            dim=3
        )
    elif pairwise_rel_type == 'vertical_bottom':
        bottom_centers = torch.clone(obj_centers)
        bottom_centers[:, :, 2] -= obj_whls[:, :, 2]
        bottom_pairwise_locs = einops.repeat(bottom_centers, 'b l d -> b l 1 d') \
                               - einops.repeat(bottom_centers, 'b l d -> b 1 l d')
        bottom_pairwise_dists = torch.sqrt(torch.sum(bottom_pairwise_locs ** 2, 3) + eps)  # (b, l, l)
        bottom_pairwise_dists_2d = torch.sqrt(torch.sum(bottom_pairwise_locs[..., :2] ** 2, 3) + eps)
        pairwise_locs = torch.stack(
            [norm_pairwise_dists,
             bottom_pairwise_locs[..., 2] / bottom_pairwise_dists,
             bottom_pairwise_dists_2d / bottom_pairwise_dists,
             pairwise_locs[..., 1] / pairwise_dists_2d,
             pairwise_locs[..., 0] / pairwise_dists_2d],
            dim=3
        )

    if spatial_dim == 4:
        pairwise_locs = pairwise_locs[..., 1:]
    return pairwise_locs

def convert_pc_to_box(obj_pc):
    xmin = np.min(obj_pc[:,0])
    ymin = np.min(obj_pc[:,1])
    zmin = np.min(obj_pc[:,2])
    xmax = np.max(obj_pc[:,0])
    ymax = np.max(obj_pc[:,1])
    zmax = np.max(obj_pc[:,2])
    center = [(xmin+xmax)/2, (ymin+ymax)/2, (zmin+zmax)/2]
    box_size = [xmax-xmin, ymax-ymin, zmax-zmin]
    return center, box_size

class LabelConverter(object):
    def __init__(self, file_path):
        self.raw_name_to_id = {}
        self.nyu40id_to_id = {}
        self.nyu40_name_to_id = {}
        self.scannet_name_to_scannet_id = {'cabinet':0, 'bed':1, 'chair':2, 'sofa':3, 'table':4,
            'door':5, 'window':6,'bookshelf':7,'picture':8, 'counter':9, 'desk':10, 'curtain':11,
            'refrigerator':12, 'shower curtain':13, 'toilet':14, 'sink':15, 'bathtub':16, 'others':17}  
        self.id_to_scannetid = {}
        self.scannet_raw_id_to_raw_name = {}
        self.raw_name_to_scannet_raw_id = {}

        with open(file_path, encoding='utf-8') as fd:
            rd = list(csv.reader(fd, delimiter="\t", quotechar='"'))
            for i in range(1, len(rd)):
                raw_id = i - 1
                scannet_raw_id = int(rd[i][0])
                raw_name = rd[i][1]
                nyu40_id = int(rd[i][4])
                nyu40_name = rd[i][7]
                self.raw_name_to_id[raw_name] = raw_id
                self.scannet_raw_id_to_raw_name[scannet_raw_id] = raw_name
                self.raw_name_to_scannet_raw_id[raw_name] = scannet_raw_id
                self.nyu40id_to_id[nyu40_id] = raw_id
                self.nyu40_name_to_id[nyu40_name] = raw_id
                if nyu40_name not in self.scannet_name_to_scannet_id:
                    self.id_to_scannetid[raw_id] = self.scannet_name_to_scannet_id['others']
                else:
                    self.id_to_scannetid[raw_id] = self.scannet_name_to_scannet_id[nyu40_name]

def build_rotate_mat(split, rot_aug=True, rand_angle='axis'):
    if rand_angle == 'random':
        theta = np.random.rand() * np.pi * 2
    else:
        ROTATE_ANGLES = [0, np.pi/2, np.pi, np.pi*3/2]
        theta_idx = np.random.randint(len(ROTATE_ANGLES))
        theta = ROTATE_ANGLES[theta_idx]
    if (theta is not None) and (theta != 0) and (split == 'train') and rot_aug:
        rot_matrix = np.array([
            [np.cos(theta), -np.sin(theta), 0],
            [np.sin(theta), np.cos(theta), 0],
            [0, 0, 1]
        ], dtype=np.float32)
    else:
        rot_matrix = None
    return rot_matrix

def obj_processing_post(obj_pcds, rot_aug=True):
        obj_pcds = torch.from_numpy(obj_pcds)
        rot_matrix = build_rotate_mat('val', rot_aug)
        if rot_matrix is not None:
            rot_matrix = torch.from_numpy(rot_matrix.transpose())
            obj_pcds[:, :, :3] @= rot_matrix
        
        xyz = obj_pcds[:, :, :3]
        center = xyz.mean(1)
        xyz_min = xyz.min(1).values
        xyz_max = xyz.max(1).values
        box_center = (xyz_min + xyz_max) / 2
        size = xyz_max - xyz_min
        obj_locs = torch.cat([center, size], dim=1)
        obj_boxes = torch.cat([box_center, size], dim=1)

        # centering
        obj_pcds[:, :, :3].sub_(obj_pcds[:, :, :3].mean(1, keepdim=True))

        # normalization
        max_dist = (obj_pcds[:, :, :3]**2).sum(2).sqrt().max(1).values
        max_dist.clamp_(min=1e-6)
        obj_pcds[:, :, :3].div_(max_dist[:, None, None])
        
        return obj_pcds, obj_locs, obj_boxes, rot_matrix


def pad_sequence(sequence_list, max_len=None, pad=0, return_mask=False):
    lens = [x.shape[0] for x in sequence_list]
    if max_len is None:
        max_len = max(lens)
        
    shape = list(sequence_list[0].shape)
    shape[0] = max_len
    shape = [len(sequence_list)] + shape
    dtype = sequence_list[0].dtype
    device = sequence_list[0].device
    padded_sequence = torch.ones(shape, dtype=dtype, device=device) * pad
    for i, tensor in enumerate(sequence_list):
        padded_sequence[i, :tensor.shape[0]] = tensor
    padded_sequence = padded_sequence.to(dtype)

    if return_mask:
        mask = torch.arange(max_len).to(device)[None, :] >= torch.LongTensor(lens).to(device)[:, None] # True as masked.
        return padded_sequence, mask
    else:
        return padded_sequence