import gradio as gr
import os
import re
import spaces
from leo.inference import inference
MESH_DIR = 'assets/mesh'
MESH_NAMES = sorted([os.path.splitext(fname)[0] for fname in os.listdir(MESH_DIR)])
STEP_COUNTS = 6
def change_scene(dropdown_scene: str):
# reset 3D scene and chatbot history
return os.path.join(MESH_DIR, f'{dropdown_scene}.glb')
with gr.Blocks(title='LEO Demo') as demo:
gr.HTML(value="
Task-oriented Sequential Grounding in 3D Scenes
")
with gr.Row():
with gr.Column(scale=5):
dropdown_scene = gr.Dropdown(
choices=MESH_NAMES,
value='scene0050_00',
interactive=True,
label='Select a 3D scene',
)
model_3d = gr.Model3D(
value=os.path.join(MESH_DIR, f'scene0050_00.glb'),
clear_color=[0.0, 0.0, 0.0, 0.0],
label='3D Scene',
camera_position=(80, 100, 6),
height=659,
)
gr.HTML(
"""
👆 SCROLL and DRAG on the 3D Scene
to zoom in/out and rotate. Press CTRL and DRAG to pan.
"""
)
dropdown_scene.change(
fn=change_scene,
inputs=[dropdown_scene],
outputs=[model_3d],
queue=False
)
# LEO task-to-plan inference wrapper
@spaces.GPU
def leo_task_to_plan(task_description):
task_input = {
"task_description": task_description,
"scan_id": "scene0050_00"
}
plan = inference("scene0050_00", task_input, predict_mode=True)
plan = plan[0]['pred_plan_text']
# parts = re.split(r'(\d+\.)', plan)[1:]
# steps = [parts[i] + parts[i + 1].rstrip() for i in range(0, len(parts), 2)]
return plan
# LEO ground inference wrapper
@spaces.GPU
def leo_plan_to_masks(task_description, *action_steps):
formatted_action_steps = [
{"action": step, "target_id": "unknown", "label": "unknown"} for step in action_steps if step != ""
]
task_input = {
"task_description": task_description,
"action_steps": formatted_action_steps,
"scan_id": "scene0050_00"
}
masks = inference("scene0050_00", task_input, predict_mode=False)
masks = [tensor.item() for tensor in masks]
return [f"assets/mask/scene0050_00/scene0050_00_obj_{mask}.glb" for mask in masks] + ["assets/mask/scene0050_00/scene0050_00_obj_empty.glb"] * (STEP_COUNTS - len(masks))
# LEO task-to-plan and ground inference wrapper
@spaces.GPU
def leo_task_to_plan_and_masks(task_description):
task_input = {
"task_description": task_description,
"scan_id": "scene0050_00"
}
plan = inference("scene0050_00", task_input, predict_mode=True)
plan_text = plan[0]['pred_plan_text']
parts = re.split(r'(\d+\.)', plan_text)[1:]
steps = [parts[i] + parts[i + 1].rstrip() for i in range(0, len(parts), 2)]
steps += ["### PLANNING HAS ENDED, SEE ABOVE FOR DETAILS ###"] * (STEP_COUNTS - len(steps))
masks = plan[0]['predict_object_id']
mask_paths = [f"assets/mask/scene0050_00/scene0050_00_obj_{mask}.glb" for mask in masks]
mask_paths += ["assets/mask/scene0050_00/scene0050_00_obj_empty.glb"] * (STEP_COUNTS - len(masks)) # fill with empty mask
output = []
for i in range(STEP_COUNTS):
output.append(steps[i])
output.append(mask_paths[i])
return output
with gr.Tab("LEO Task-to-Plan"):
gr.Interface(
fn=leo_task_to_plan,
inputs=[gr.Textbox(label="Task Description")],
outputs=["text"],
examples=[
["Freshen up in the bathroom."]
],
title="LEO Task-to-Plan: Input task, Output plan text"
)
with gr.Tab("LEO Plan-to-Masks"):
gr.Interface(
fn=leo_plan_to_masks,
inputs=[gr.Textbox(label="Task Description")] + [gr.Textbox(label=f"Action Step {i+1}") for i in range(STEP_COUNTS)],
outputs=[gr.Model3D(
clear_color=[0.0, 0.0, 0.0, 0.0], camera_position=(80, 100, 6), label=f"3D Model for Step {i+1} (if the step exists)") for i in range(STEP_COUNTS)],
examples=[
["Retrieve an item from the backpack.", "1. Walk to the ottoman located near the brown leather armchair.", "2. Choose the black backpack resting on this ottoman.", "3. Open the backpack to find the needed item."] + [""] * (STEP_COUNTS - 3)
],
title="LEO Plan-to-Masks: Input plan, Output 3D Masks for each step, Red denotes predicted target object"
)
with gr.Tab("LEO Task-to-Plan and Masks"):
gr.Interface(
fn=leo_task_to_plan_and_masks,
inputs=[gr.Textbox(label="Task Description")],
outputs=[
item for sublist in zip(
[gr.Textbox(label=f"Action Step {i+1}") for i in range(STEP_COUNTS)],
[gr.Model3D(
clear_color=[0.0, 0.0, 0.0, 0.0],
camera_position=(80, 100, 6),
label=f"3D Model for Step {i+1} (if the step exists)"
) for i in range(STEP_COUNTS)]
) for item in sublist
],
examples=[
["Retrieve an item from the backpack."]
],
title="LEO Task-to-Plan and Masks: Input task, Output plan text and 3D Masks for each step, Red denotes predicted target object",
# js="""
# function() {
# const stepCounts = """ + str(STEP_COUNTS) + """;
# const stepElems = document.querySelectorAll('.output_interface .textbox_output');
# const modelElems = document.querySelectorAll('.output_interface .model3d_output');
# for (let i = 0; i < stepCounts; i++) {
# if (stepElems[i].value === '### PLANNING HAS ENDED, SEE ABOVE FOR DETAILS ###' || modelElems[i].src.includes('scene0050_00_obj_empty.glb')) {
# stepElems[i].style.display = 'none';
# modelElems[i].style.display = 'none';
# }
# }
# }
# """
)
demo.queue().launch(share=True, allowed_paths=['assets'])