import gradio as gr import os import re import spaces from leo.inference import inference MESH_DIR = 'assets/mesh' MESH_NAMES = sorted([os.path.splitext(fname)[0] for fname in os.listdir(MESH_DIR)]) STEP_COUNTS = 6 def change_scene(dropdown_scene: str): # reset 3D scene and chatbot history return os.path.join(MESH_DIR, f'{dropdown_scene}.glb') with gr.Blocks(title='LEO Demo') as demo: gr.HTML(value="

Task-oriented Sequential Grounding in 3D Scenes

") with gr.Row(): with gr.Column(scale=5): dropdown_scene = gr.Dropdown( choices=MESH_NAMES, value='scene0050_00', interactive=True, label='Select a 3D scene', ) model_3d = gr.Model3D( value=os.path.join(MESH_DIR, f'scene0050_00.glb'), clear_color=[0.0, 0.0, 0.0, 0.0], label='3D Scene', camera_position=(80, 100, 6), height=659, ) gr.HTML( """
👆 SCROLL and DRAG on the 3D Scene to zoom in/out and rotate. Press CTRL and DRAG to pan.
""" ) dropdown_scene.change( fn=change_scene, inputs=[dropdown_scene], outputs=[model_3d], queue=False ) # LEO task-to-plan inference wrapper @spaces.GPU def leo_task_to_plan(task_description): task_input = { "task_description": task_description, "scan_id": "scene0050_00" } plan = inference("scene0050_00", task_input, predict_mode=True) plan = plan[0]['pred_plan_text'] # parts = re.split(r'(\d+\.)', plan)[1:] # steps = [parts[i] + parts[i + 1].rstrip() for i in range(0, len(parts), 2)] return plan # LEO ground inference wrapper @spaces.GPU def leo_plan_to_masks(task_description, *action_steps): formatted_action_steps = [ {"action": step, "target_id": "unknown", "label": "unknown"} for step in action_steps if step != "" ] task_input = { "task_description": task_description, "action_steps": formatted_action_steps, "scan_id": "scene0050_00" } masks = inference("scene0050_00", task_input, predict_mode=False) masks = [tensor.item() for tensor in masks] return [f"assets/mask/scene0050_00/scene0050_00_obj_{mask}.glb" for mask in masks] + ["assets/mask/scene0050_00/scene0050_00_obj_empty.glb"] * (STEP_COUNTS - len(masks)) # LEO task-to-plan and ground inference wrapper @spaces.GPU def leo_task_to_plan_and_masks(task_description): task_input = { "task_description": task_description, "scan_id": "scene0050_00" } plan = inference("scene0050_00", task_input, predict_mode=True) plan_text = plan[0]['pred_plan_text'] parts = re.split(r'(\d+\.)', plan_text)[1:] steps = [parts[i] + parts[i + 1].rstrip() for i in range(0, len(parts), 2)] steps += ["### PLANNING HAS ENDED, SEE ABOVE FOR DETAILS ###"] * (STEP_COUNTS - len(steps)) masks = plan[0]['predict_object_id'] mask_paths = [f"assets/mask/scene0050_00/scene0050_00_obj_{mask}.glb" for mask in masks] mask_paths += ["assets/mask/scene0050_00/scene0050_00_obj_empty.glb"] * (STEP_COUNTS - len(masks)) # fill with empty mask output = [] for i in range(STEP_COUNTS): output.append(steps[i]) output.append(mask_paths[i]) return output # with gr.Tab("LEO Task-to-Plan"): # gr.Interface( # fn=leo_task_to_plan, # inputs=[gr.Textbox(label="Task Description")], # outputs=["text"], # examples=[ # ["Freshen up in the bathroom."] # ], # title="LEO Task-to-Plan: Input task, Output plan text" # ) with gr.Tab("LEO Plan-to-Masks"): gr.Interface( fn=leo_plan_to_masks, inputs=[gr.Textbox(label="Task Description")] + [gr.Textbox(label=f"Action Step {i+1}") for i in range(STEP_COUNTS)], outputs=[gr.Model3D( clear_color=[0.0, 0.0, 0.0, 0.0], camera_position=(80, 100, 6), label=f"3D Model for Step {i+1} (if the step exists)") for i in range(STEP_COUNTS)], examples=[ ["Start Working at the desk.", "1. Walk to the desk.", "2. Sit on the brown leather sofa chair in front of the desk.", "3. Turn on the opened laptop in front of you on the desk.", "4. Grab the cup beside the laptop to drink."] + [""] * (STEP_COUNTS - 4) ], title="LEO Plan-to-Masks: Input plan, Output 3D Masks for each step, Red denotes predicted target object" ) with gr.Tab("LEO Task-to-Plan and Masks"): gr.Interface( fn=leo_task_to_plan_and_masks, inputs=[gr.Textbox(label="Task Description")], outputs=[ item for sublist in zip( [gr.Textbox(label=f"Action Step {i+1}") for i in range(STEP_COUNTS)], [gr.Model3D( clear_color=[0.0, 0.0, 0.0, 0.0], camera_position=(80, 100, 6), label=f"3D Model for Step {i+1} (if the step exists)" ) for i in range(STEP_COUNTS)] ) for item in sublist ], examples=[ ["Start Working at the desk."] ], title="LEO Task-to-Plan and Masks: Input task, Output plan text and 3D Masks for each step, Red denotes predicted target object", # js=""" # function() { # const stepCounts = """ + str(STEP_COUNTS) + """; # const stepElems = document.querySelectorAll('.output_interface .textbox_output'); # const modelElems = document.querySelectorAll('.output_interface .model3d_output'); # for (let i = 0; i < stepCounts; i++) { # if (stepElems[i].value === '### PLANNING HAS ENDED, SEE ABOVE FOR DETAILS ###' || modelElems[i].src.includes('scene0050_00_obj_empty.glb')) { # stepElems[i].style.display = 'none'; # modelElems[i].style.display = 'none'; # } # } # } # """ ) demo.queue().launch(share=True, allowed_paths=['assets'])