Spaces:
Runtime error
Runtime error
File size: 14,863 Bytes
3e88ee7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 |
import argparse
import math
import os
from pathlib import Path
from typing import Optional
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import set_seed
from diffusers import AutoencoderKL, DDPMScheduler, StableDiffusionPipeline, UNet2DConditionModel
from huggingface_hub import HfFolder, Repository, whoami
from PIL import Image
import numpy as np
from torchvision import transforms
from tqdm.auto import tqdm
from transformers import CLIPTextModel, CLIPTokenizer
logger = get_logger(__name__)
def parse_args():
parser = argparse.ArgumentParser(description="Simple example of a training script.")
parser.add_argument(
"--pretrained_model_name_or_path",
type=str,
default=None,
required=True,
help="Path to pretrained model or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--tokenizer_name",
type=str,
default=None,
help="Pretrained tokenizer name or path if not the same as model_name",
)
parser.add_argument(
"--input_image",
type=str,
default=None,
required=True,
help="Path to input image to edit.",
)
parser.add_argument(
"--target_text",
type=str,
default=None,
help="The target text describing the output image.",
)
parser.add_argument(
"--output_dir",
type=str,
default="text-inversion-model",
help="The output directory where the model predictions and checkpoints will be written.",
)
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
parser.add_argument(
"--resolution",
type=int,
default=512,
help=(
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
" resolution"
),
)
parser.add_argument(
"--center_crop", action="store_true", help="Whether to center crop images before resizing to resolution"
)
parser.add_argument(
"--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader."
)
parser.add_argument(
"--emb_train_steps",
type=int,
default=500,
help="Total number of training steps to perform.",
)
parser.add_argument(
"--max_train_steps",
type=int,
default=1000,
help="Total number of training steps to perform.",
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument(
"--gradient_checkpointing",
action="store_true",
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
)
parser.add_argument(
"--emb_learning_rate",
type=float,
default=1e-3,
help="Learning rate for optimizing the embeddings.",
)
parser.add_argument(
"--learning_rate",
type=float,
default=1e-6,
help="Learning rate for fine tuning the model.",
)
parser.add_argument(
"--scale_lr",
action="store_true",
default=False,
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
)
parser.add_argument(
"--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes."
)
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
parser.add_argument(
"--hub_model_id",
type=str,
default=None,
help="The name of the repository to keep in sync with the local `output_dir`.",
)
parser.add_argument(
"--logging_dir",
type=str,
default="logs",
help=(
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
),
)
parser.add_argument("--log_interval", type=int, default=10, help="Log every N steps.")
parser.add_argument(
"--mixed_precision",
type=str,
default="no",
choices=["no", "fp16", "bf16"],
help=(
"Whether to use mixed precision. Choose"
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
"and an Nvidia Ampere GPU."
),
)
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
args = parser.parse_args()
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
if env_local_rank != -1 and env_local_rank != args.local_rank:
args.local_rank = env_local_rank
return args
class AverageMeter:
def __init__(self, name=None):
self.name = name
self.reset()
def reset(self):
self.sum = self.count = self.avg = 0
def update(self, val, n=1):
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def get_full_repo_name(model_id: str, organization: Optional[str] = None, token: Optional[str] = None):
if token is None:
token = HfFolder.get_token()
if organization is None:
username = whoami(token)["name"]
return f"{username}/{model_id}"
else:
return f"{organization}/{model_id}"
def main():
args = parse_args()
logging_dir = Path(args.output_dir, args.logging_dir)
accelerator = Accelerator(
gradient_accumulation_steps=args.gradient_accumulation_steps,
mixed_precision=args.mixed_precision,
log_with="tensorboard",
logging_dir=logging_dir,
)
if args.seed is not None:
set_seed(args.seed)
# Handle the repository creation
if accelerator.is_main_process:
if args.push_to_hub:
if args.hub_model_id is None:
repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token)
else:
repo_name = args.hub_model_id
repo = Repository(args.output_dir, clone_from=repo_name)
with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore:
if "step_*" not in gitignore:
gitignore.write("step_*\n")
if "epoch_*" not in gitignore:
gitignore.write("epoch_*\n")
elif args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
# Load the tokenizer
if args.tokenizer_name:
tokenizer = CLIPTokenizer.from_pretrained(args.tokenizer_name)
elif args.pretrained_model_name_or_path:
tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer", use_auth_token=True)
# Load models and create wrapper for stable diffusion
text_encoder = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="text_encoder", use_auth_token=True)
vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae", use_auth_token=True)
unet = UNet2DConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="unet", use_auth_token=True)
if args.gradient_checkpointing:
unet.enable_gradient_checkpointing()
if args.scale_lr:
args.learning_rate = (
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
)
# Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs
if args.use_8bit_adam:
try:
import bitsandbytes as bnb
except ImportError:
raise ImportError(
"To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`."
)
optimizer_class = bnb.optim.Adam8bit
else:
optimizer_class = torch.optim.Adam
noise_scheduler = DDPMScheduler(
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000
)
weight_dtype = torch.float32
if args.mixed_precision == "fp16":
weight_dtype = torch.float16
elif args.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
# Move text_encode and vae to gpu.
# For mixed precision training we cast the text_encoder and vae weights to half-precision
# as these models are only used for inference, keeping weights in full precision is not required.
text_encoder.to(accelerator.device, dtype=weight_dtype)
vae.to(accelerator.device, dtype=weight_dtype)
# Encode the input image.
input_image = Image.open(args.input_image).convert("RGB")
image_transforms = transforms.Compose(
[
transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR),
transforms.CenterCrop(args.resolution) if args.center_crop else transforms.RandomCrop(args.resolution),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
init_image = image_transforms(input_image)
init_image = init_image[None].to(device=accelerator.device, dtype=weight_dtype)
with torch.inference_mode():
init_latents = vae.encode(init_image).latent_dist.sample()
init_latents = 0.18215 * init_latents
# Encode the target text.
text_ids = tokenizer(
args.target_text,
padding="max_length",
truncation=True,
max_length=tokenizer.model_max_length,
return_tensors="pt",
).input_ids
text_ids = text_ids.to(device=accelerator.device)
with torch.inference_mode():
target_embeddings = text_encoder(text_ids)[0]
del vae, text_encoder
if torch.cuda.is_available():
torch.cuda.empty_cache()
target_embeddings = target_embeddings.float()
optimized_embeddings = target_embeddings.clone()
# Optimize the text embeddings first.
optimized_embeddings.requires_grad_(True)
optimizer = optimizer_class(
[optimized_embeddings], # only optimize embeddings
lr=args.emb_learning_rate,
betas=(args.adam_beta1, args.adam_beta2),
# weight_decay=args.adam_weight_decay,
eps=args.adam_epsilon,
)
unet, optimizer = accelerator.prepare(unet, optimizer)
# We need to initialize the trackers we use, and also store our configuration.
# The trackers initializes automatically on the main process.
if accelerator.is_main_process:
accelerator.init_trackers("imagic", config=vars(args))
def train_loop(pbar, optimizer, params):
loss_avg = AverageMeter()
for step in pbar:
with accelerator.accumulate(unet):
noise = torch.randn_like(init_latents)
bsz = init_latents.shape[0]
# Sample a random timestep for each image
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=init_latents.device)
timesteps = timesteps.long()
# Add noise to the latents according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_latents = noise_scheduler.add_noise(init_latents, noise, timesteps)
noise_pred = unet(noisy_latents, timesteps, optimized_embeddings).sample
loss = F.mse_loss(noise_pred.float(), noise.float(), reduction="mean")
accelerator.backward(loss)
# if accelerator.sync_gradients: # results aren't good with it, may be will need more training with it.
# accelerator.clip_grad_norm_(params, args.max_grad_norm)
optimizer.step()
optimizer.zero_grad(set_to_none=True)
loss_avg.update(loss.detach_(), bsz)
if not step % args.log_interval:
logs = {"loss": loss_avg.avg.item()}
progress_bar.set_postfix(**logs)
accelerator.log(logs, step=step)
accelerator.wait_for_everyone()
progress_bar = tqdm(range(args.emb_train_steps), disable=not accelerator.is_local_main_process)
progress_bar.set_description("Optimizing embedding")
train_loop(progress_bar, optimizer, optimized_embeddings)
optimized_embeddings.requires_grad_(False)
if accelerator.is_main_process:
torch.save(target_embeddings.cpu(), os.path.join(args.output_dir, "target_embeddings.pt"))
torch.save(optimized_embeddings.cpu(), os.path.join(args.output_dir, "optimized_embeddings.pt"))
with open(os.path.join(args.output_dir, "target_text.txt"), "w") as f:
f.write(args.target_text)
# Fine tune the diffusion model.
optimizer = optimizer_class(
accelerator.unwrap_model(unet).parameters(),
lr=args.learning_rate,
betas=(args.adam_beta1, args.adam_beta2),
# weight_decay=args.adam_weight_decay,
eps=args.adam_epsilon,
)
optimizer = accelerator.prepare(optimizer)
progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process)
progress_bar.set_description("Fine Tuning")
unet.train()
train_loop(progress_bar, optimizer, unet.parameters())
# Create the pipeline using using the trained modules and save it.
if accelerator.is_main_process:
pipeline = StableDiffusionPipeline.from_pretrained(
args.pretrained_model_name_or_path,
unet=accelerator.unwrap_model(unet),
use_auth_token=True
)
pipeline.save_pretrained(args.output_dir)
if args.push_to_hub:
repo.push_to_hub(commit_message="End of training", blocking=False, auto_lfs_prune=True)
accelerator.end_training()
if __name__ == "__main__":
main()
|