File size: 4,586 Bytes
3e88ee7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import unittest

import numpy as np
import torch

from diffusers import RePaintPipeline, RePaintScheduler, UNet2DModel
from diffusers.utils.testing_utils import load_image, load_numpy, nightly, require_torch_gpu, torch_device

from ...test_pipelines_common import PipelineTesterMixin


torch.backends.cuda.matmul.allow_tf32 = False


class RepaintPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
    pipeline_class = RePaintPipeline
    test_cpu_offload = False

    def get_dummy_components(self):
        torch.manual_seed(0)
        torch.manual_seed(0)
        unet = UNet2DModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=3,
            out_channels=3,
            down_block_types=("DownBlock2D", "AttnDownBlock2D"),
            up_block_types=("AttnUpBlock2D", "UpBlock2D"),
        )
        scheduler = RePaintScheduler()
        components = {"unet": unet, "scheduler": scheduler}
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        image = np.random.RandomState(seed).standard_normal((1, 3, 32, 32))
        image = torch.from_numpy(image).to(device=device, dtype=torch.float32)
        mask = (image > 0).to(device=device, dtype=torch.float32)
        inputs = {
            "image": image,
            "mask_image": mask,
            "generator": generator,
            "num_inference_steps": 5,
            "eta": 0.0,
            "jump_length": 2,
            "jump_n_sample": 2,
            "output_type": "numpy",
        }
        return inputs

    def test_repaint(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()
        sd_pipe = RePaintPipeline(**components)
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        image = sd_pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([1.0000, 0.5426, 0.5497, 0.2200, 1.0000, 1.0000, 0.5623, 1.0000, 0.6274])

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3


@nightly
@require_torch_gpu
class RepaintPipelineNightlyTests(unittest.TestCase):
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def test_celebahq(self):
        original_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/"
            "repaint/celeba_hq_256.png"
        )
        mask_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/repaint/mask_256.png"
        )
        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/"
            "repaint/celeba_hq_256_result.npy"
        )

        model_id = "google/ddpm-ema-celebahq-256"
        unet = UNet2DModel.from_pretrained(model_id)
        scheduler = RePaintScheduler.from_pretrained(model_id)

        repaint = RePaintPipeline(unet=unet, scheduler=scheduler).to(torch_device)
        repaint.set_progress_bar_config(disable=None)
        repaint.enable_attention_slicing()

        generator = torch.manual_seed(0)
        output = repaint(
            original_image,
            mask_image,
            num_inference_steps=250,
            eta=0.0,
            jump_length=10,
            jump_n_sample=10,
            generator=generator,
            output_type="np",
        )
        image = output.images[0]

        assert image.shape == (256, 256, 3)
        assert np.abs(expected_image - image).mean() < 1e-2