import intel_extension_for_pytorch as ipex import torch from PIL import Image from diffusers import StableDiffusionPipeline def image_grid(imgs, rows, cols): assert len(imgs) == rows * cols w, h = imgs[0].size grid = Image.new("RGB", size=(cols * w, rows * h)) grid_w, grid_h = grid.size for i, img in enumerate(imgs): grid.paste(img, box=(i % cols * w, i // cols * h)) return grid prompt = ["a lovely in red dress and hat, in the snowly and brightly night, with many brighly buildings"] batch_size = 8 prompt = prompt * batch_size device = "cpu" model_id = "path-to-your-trained-model" model = StableDiffusionPipeline.from_pretrained(model_id) model = model.to(device) # to channels last model.unet = model.unet.to(memory_format=torch.channels_last) model.vae = model.vae.to(memory_format=torch.channels_last) model.text_encoder = model.text_encoder.to(memory_format=torch.channels_last) model.safety_checker = model.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex model.unet = ipex.optimize(model.unet.eval(), dtype=torch.bfloat16, inplace=True) model.vae = ipex.optimize(model.vae.eval(), dtype=torch.bfloat16, inplace=True) model.text_encoder = ipex.optimize(model.text_encoder.eval(), dtype=torch.bfloat16, inplace=True) model.safety_checker = ipex.optimize(model.safety_checker.eval(), dtype=torch.bfloat16, inplace=True) # compute seed = 666 generator = torch.Generator(device).manual_seed(seed) with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloat16): images = model(prompt, guidance_scale=7.5, num_inference_steps=50, generator=generator).images # save image grid = image_grid(images, rows=2, cols=4) grid.save(model_id + ".png")