# coding=utf-8 # Copyright 2022 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, Transformer2DModel from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu from ...test_pipelines_common import PipelineTesterMixin torch.backends.cuda.matmul.allow_tf32 = False class DiTPipelineFastTests(PipelineTesterMixin, unittest.TestCase): pipeline_class = DiTPipeline test_cpu_offload = False def get_dummy_components(self): torch.manual_seed(0) transformer = Transformer2DModel( sample_size=16, num_layers=2, patch_size=4, attention_head_dim=8, num_attention_heads=2, in_channels=4, out_channels=8, attention_bias=True, activation_fn="gelu-approximate", num_embeds_ada_norm=1000, norm_type="ada_norm_zero", norm_elementwise_affine=False, ) vae = AutoencoderKL() scheduler = DDIMScheduler() components = {"transformer": transformer.eval(), "vae": vae.eval(), "scheduler": scheduler} return components def get_dummy_inputs(self, device, seed=0): if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) inputs = { "class_labels": [1], "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def test_inference(self): device = "cpu" components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe.to(device) pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) image = pipe(**inputs).images image_slice = image[0, -3:, -3:, -1] self.assertEqual(image.shape, (1, 16, 16, 3)) expected_slice = np.array([0.4380, 0.4141, 0.5159, 0.0000, 0.4282, 0.6680, 0.5485, 0.2545, 0.6719]) max_diff = np.abs(image_slice.flatten() - expected_slice).max() self.assertLessEqual(max_diff, 1e-3) def test_inference_batch_single_identical(self): self._test_inference_batch_single_identical(relax_max_difference=True) @require_torch_gpu @slow class DiTPipelineIntegrationTests(unittest.TestCase): def tearDown(self): super().tearDown() gc.collect() torch.cuda.empty_cache() def test_dit_256(self): generator = torch.manual_seed(0) pipe = DiTPipeline.from_pretrained("facebook/DiT-XL-2-256") pipe.to("cuda") words = ["vase", "umbrella", "white shark", "white wolf"] ids = pipe.get_label_ids(words) images = pipe(ids, generator=generator, num_inference_steps=40, output_type="np").images for word, image in zip(words, images): expected_image = load_numpy( f"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy" ) assert np.abs((expected_image - image).max()) < 1e-3 def test_dit_512_fp16(self): pipe = DiTPipeline.from_pretrained("facebook/DiT-XL-2-512", torch_dtype=torch.float16) pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe.to("cuda") words = ["vase", "umbrella"] ids = pipe.get_label_ids(words) generator = torch.manual_seed(0) images = pipe(ids, generator=generator, num_inference_steps=25, output_type="np").images for word, image in zip(words, images): expected_image = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" f"/dit/{word}_fp16.npy" ) assert np.abs((expected_image - image).max()) < 7.5e-1