import contextlib import gc import inspect import io import re import tempfile import unittest from typing import Callable, Union import numpy as np import torch import diffusers from diffusers import ( CycleDiffusionPipeline, DanceDiffusionPipeline, DiffusionPipeline, RePaintPipeline, StableDiffusionDepth2ImgPipeline, StableDiffusionImg2ImgPipeline, ) from diffusers.utils import logging from diffusers.utils.import_utils import is_accelerate_available, is_xformers_available from diffusers.utils.testing_utils import require_torch, torch_device torch.backends.cuda.matmul.allow_tf32 = False @require_torch class PipelineTesterMixin: """ This mixin is designed to be used with unittest.TestCase classes. It provides a set of common tests for each PyTorch pipeline, e.g. saving and loading the pipeline, equivalence of dict and tuple outputs, etc. """ allowed_required_args = ["source_prompt", "prompt", "image", "mask_image", "example_image", "class_labels"] required_optional_params = ["generator", "num_inference_steps", "return_dict"] num_inference_steps_args = ["num_inference_steps"] # set these parameters to False in the child class if the pipeline does not support the corresponding functionality test_attention_slicing = True test_cpu_offload = True test_xformers_attention = True def get_generator(self, seed): device = torch_device if torch_device != "mps" else "cpu" generator = torch.Generator(device).manual_seed(seed) return generator @property def pipeline_class(self) -> Union[Callable, DiffusionPipeline]: raise NotImplementedError( "You need to set the attribute `pipeline_class = ClassNameOfPipeline` in the child test class. " "See existing pipeline tests for reference." ) def get_dummy_components(self): raise NotImplementedError( "You need to implement `get_dummy_components(self)` in the child test class. " "See existing pipeline tests for reference." ) def get_dummy_inputs(self, device, seed=0): raise NotImplementedError( "You need to implement `get_dummy_inputs(self, device, seed)` in the child test class. " "See existing pipeline tests for reference." ) def tearDown(self): # clean up the VRAM after each test in case of CUDA runtime errors super().tearDown() gc.collect() torch.cuda.empty_cache() def test_save_load_local(self): if torch_device == "mps" and self.pipeline_class in ( DanceDiffusionPipeline, CycleDiffusionPipeline, RePaintPipeline, StableDiffusionImg2ImgPipeline, ): # FIXME: inconsistent outputs on MPS return components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) # Warmup pass when using mps (see #372) if torch_device == "mps": _ = pipe(**self.get_dummy_inputs(torch_device)) inputs = self.get_dummy_inputs(torch_device) output = pipe(**inputs)[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(tmpdir) pipe_loaded = self.pipeline_class.from_pretrained(tmpdir) pipe_loaded.to(torch_device) pipe_loaded.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(torch_device) output_loaded = pipe_loaded(**inputs)[0] max_diff = np.abs(output - output_loaded).max() self.assertLess(max_diff, 1e-4) def test_pipeline_call_implements_required_args(self): assert hasattr(self.pipeline_class, "__call__"), f"{self.pipeline_class} should have a `__call__` method" parameters = inspect.signature(self.pipeline_class.__call__).parameters required_parameters = {k: v for k, v in parameters.items() if v.default == inspect._empty} required_parameters.pop("self") required_parameters = set(required_parameters) optional_parameters = set({k for k, v in parameters.items() if v.default != inspect._empty}) for param in required_parameters: if param == "kwargs": # kwargs can be added if arguments of pipeline call function are deprecated continue assert param in self.allowed_required_args optional_parameters = set({k for k, v in parameters.items() if v.default != inspect._empty}) for param in self.required_optional_params: assert param in optional_parameters def test_inference_batch_consistent(self): self._test_inference_batch_consistent() def _test_inference_batch_consistent(self, batch_sizes=[2, 4, 13]): components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(torch_device) logger = logging.get_logger(pipe.__module__) logger.setLevel(level=diffusers.logging.FATAL) # batchify inputs for batch_size in batch_sizes: batched_inputs = {} for name, value in inputs.items(): if name in self.allowed_required_args: # prompt is string if name == "prompt": len_prompt = len(value) # make unequal batch sizes batched_inputs[name] = [value[: len_prompt // i] for i in range(1, batch_size + 1)] # make last batch super long batched_inputs[name][-1] = 2000 * "very long" # or else we have images else: batched_inputs[name] = batch_size * [value] elif name == "batch_size": batched_inputs[name] = batch_size else: batched_inputs[name] = value for arg in self.num_inference_steps_args: batched_inputs[arg] = inputs[arg] batched_inputs["output_type"] = None if self.pipeline_class.__name__ == "DanceDiffusionPipeline": batched_inputs.pop("output_type") output = pipe(**batched_inputs) assert len(output[0]) == batch_size batched_inputs["output_type"] = "np" if self.pipeline_class.__name__ == "DanceDiffusionPipeline": batched_inputs.pop("output_type") output = pipe(**batched_inputs)[0] assert output.shape[0] == batch_size logger.setLevel(level=diffusers.logging.WARNING) def test_inference_batch_single_identical(self): self._test_inference_batch_single_identical() def _test_inference_batch_single_identical( self, test_max_difference=None, test_mean_pixel_difference=None, relax_max_difference=False ): if self.pipeline_class.__name__ in ["CycleDiffusionPipeline", "RePaintPipeline"]: # RePaint can hardly be made deterministic since the scheduler is currently always # nondeterministic # CycleDiffusion is also slightly nondeterministic return if test_max_difference is None: # TODO(Pedro) - not sure why, but not at all reproducible at the moment it seems # make sure that batched and non-batched is identical test_max_difference = torch_device != "mps" if test_mean_pixel_difference is None: # TODO same as above test_mean_pixel_difference = torch_device != "mps" components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(torch_device) logger = logging.get_logger(pipe.__module__) logger.setLevel(level=diffusers.logging.FATAL) # batchify inputs batched_inputs = {} batch_size = 3 for name, value in inputs.items(): if name in self.allowed_required_args: # prompt is string if name == "prompt": len_prompt = len(value) # make unequal batch sizes batched_inputs[name] = [value[: len_prompt // i] for i in range(1, batch_size + 1)] # make last batch super long batched_inputs[name][-1] = 2000 * "very long" # or else we have images else: batched_inputs[name] = batch_size * [value] elif name == "batch_size": batched_inputs[name] = batch_size elif name == "generator": batched_inputs[name] = [self.get_generator(i) for i in range(batch_size)] else: batched_inputs[name] = value for arg in self.num_inference_steps_args: batched_inputs[arg] = inputs[arg] if self.pipeline_class.__name__ != "DanceDiffusionPipeline": batched_inputs["output_type"] = "np" output_batch = pipe(**batched_inputs) assert output_batch[0].shape[0] == batch_size inputs["generator"] = self.get_generator(0) output = pipe(**inputs) logger.setLevel(level=diffusers.logging.WARNING) if test_max_difference: if relax_max_difference: # Taking the median of the largest differences # is resilient to outliers diff = np.abs(output_batch[0][0] - output[0][0]) diff = diff.flatten() diff.sort() max_diff = np.median(diff[-5:]) else: max_diff = np.abs(output_batch[0][0] - output[0][0]).max() assert max_diff < 1e-4 if test_mean_pixel_difference: assert_mean_pixel_difference(output_batch[0][0], output[0][0]) def test_dict_tuple_outputs_equivalent(self): if torch_device == "mps" and self.pipeline_class in ( DanceDiffusionPipeline, CycleDiffusionPipeline, RePaintPipeline, StableDiffusionImg2ImgPipeline, ): # FIXME: inconsistent outputs on MPS return components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) # Warmup pass when using mps (see #372) if torch_device == "mps": _ = pipe(**self.get_dummy_inputs(torch_device)) output = pipe(**self.get_dummy_inputs(torch_device))[0] output_tuple = pipe(**self.get_dummy_inputs(torch_device), return_dict=False)[0] max_diff = np.abs(output - output_tuple).max() self.assertLess(max_diff, 1e-4) def test_components_function(self): init_components = self.get_dummy_components() pipe = self.pipeline_class(**init_components) self.assertTrue(hasattr(pipe, "components")) self.assertTrue(set(pipe.components.keys()) == set(init_components.keys())) @unittest.skipIf(torch_device != "cuda", reason="float16 requires CUDA") def test_float16_inference(self): components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) for name, module in components.items(): if hasattr(module, "half"): components[name] = module.half() pipe_fp16 = self.pipeline_class(**components) pipe_fp16.to(torch_device) pipe_fp16.set_progress_bar_config(disable=None) output = pipe(**self.get_dummy_inputs(torch_device))[0] output_fp16 = pipe_fp16(**self.get_dummy_inputs(torch_device))[0] max_diff = np.abs(output - output_fp16).max() self.assertLess(max_diff, 1e-2, "The outputs of the fp16 and fp32 pipelines are too different.") @unittest.skipIf(torch_device != "cuda", reason="float16 requires CUDA") def test_save_load_float16(self): components = self.get_dummy_components() for name, module in components.items(): if hasattr(module, "half"): components[name] = module.to(torch_device).half() pipe = self.pipeline_class(**components) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(torch_device) output = pipe(**inputs)[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(tmpdir) pipe_loaded = self.pipeline_class.from_pretrained(tmpdir, torch_dtype=torch.float16) pipe_loaded.to(torch_device) pipe_loaded.set_progress_bar_config(disable=None) for name, component in pipe_loaded.components.items(): if hasattr(component, "dtype"): self.assertTrue( component.dtype == torch.float16, f"`{name}.dtype` switched from `float16` to {component.dtype} after loading.", ) inputs = self.get_dummy_inputs(torch_device) output_loaded = pipe_loaded(**inputs)[0] max_diff = np.abs(output - output_loaded).max() self.assertLess(max_diff, 3e-3, "The output of the fp16 pipeline changed after saving and loading.") def test_save_load_optional_components(self): if not hasattr(self.pipeline_class, "_optional_components"): return if torch_device == "mps" and self.pipeline_class in ( DanceDiffusionPipeline, CycleDiffusionPipeline, RePaintPipeline, StableDiffusionImg2ImgPipeline, ): # FIXME: inconsistent outputs on MPS return components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) # Warmup pass when using mps (see #372) if torch_device == "mps": _ = pipe(**self.get_dummy_inputs(torch_device)) # set all optional components to None for optional_component in pipe._optional_components: setattr(pipe, optional_component, None) inputs = self.get_dummy_inputs(torch_device) output = pipe(**inputs)[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(tmpdir) pipe_loaded = self.pipeline_class.from_pretrained(tmpdir) pipe_loaded.to(torch_device) pipe_loaded.set_progress_bar_config(disable=None) for optional_component in pipe._optional_components: self.assertTrue( getattr(pipe_loaded, optional_component) is None, f"`{optional_component}` did not stay set to None after loading.", ) inputs = self.get_dummy_inputs(torch_device) output_loaded = pipe_loaded(**inputs)[0] max_diff = np.abs(output - output_loaded).max() self.assertLess(max_diff, 1e-4) @unittest.skipIf(torch_device != "cuda", reason="CUDA and CPU are required to switch devices") def test_to_device(self): components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe.set_progress_bar_config(disable=None) pipe.to("cpu") model_devices = [component.device.type for component in components.values() if hasattr(component, "device")] self.assertTrue(all(device == "cpu" for device in model_devices)) output_cpu = pipe(**self.get_dummy_inputs("cpu"))[0] self.assertTrue(np.isnan(output_cpu).sum() == 0) pipe.to("cuda") model_devices = [component.device.type for component in components.values() if hasattr(component, "device")] self.assertTrue(all(device == "cuda" for device in model_devices)) output_cuda = pipe(**self.get_dummy_inputs("cuda"))[0] self.assertTrue(np.isnan(output_cuda).sum() == 0) def test_attention_slicing_forward_pass(self): self._test_attention_slicing_forward_pass() def _test_attention_slicing_forward_pass(self, test_max_difference=True): if not self.test_attention_slicing: return if torch_device == "mps" and self.pipeline_class in ( DanceDiffusionPipeline, CycleDiffusionPipeline, RePaintPipeline, StableDiffusionImg2ImgPipeline, StableDiffusionDepth2ImgPipeline, ): # FIXME: inconsistent outputs on MPS return components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) # Warmup pass when using mps (see #372) if torch_device == "mps": _ = pipe(**self.get_dummy_inputs(torch_device)) inputs = self.get_dummy_inputs(torch_device) output_without_slicing = pipe(**inputs)[0] pipe.enable_attention_slicing(slice_size=1) inputs = self.get_dummy_inputs(torch_device) output_with_slicing = pipe(**inputs)[0] if test_max_difference: max_diff = np.abs(output_with_slicing - output_without_slicing).max() self.assertLess(max_diff, 1e-3, "Attention slicing should not affect the inference results") assert_mean_pixel_difference(output_with_slicing[0], output_without_slicing[0]) @unittest.skipIf( torch_device != "cuda" or not is_accelerate_available(), reason="CPU offload is only available with CUDA and `accelerate` installed", ) def test_cpu_offload_forward_pass(self): if not self.test_cpu_offload: return components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(torch_device) output_without_offload = pipe(**inputs)[0] pipe.enable_sequential_cpu_offload() inputs = self.get_dummy_inputs(torch_device) output_with_offload = pipe(**inputs)[0] max_diff = np.abs(output_with_offload - output_without_offload).max() self.assertLess(max_diff, 1e-4, "CPU offloading should not affect the inference results") @unittest.skipIf( torch_device != "cuda" or not is_xformers_available(), reason="XFormers attention is only available with CUDA and `xformers` installed", ) def test_xformers_attention_forwardGenerator_pass(self): if not self.test_xformers_attention: return components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(torch_device) output_without_offload = pipe(**inputs)[0] pipe.enable_xformers_memory_efficient_attention() inputs = self.get_dummy_inputs(torch_device) output_with_offload = pipe(**inputs)[0] max_diff = np.abs(output_with_offload - output_without_offload).max() self.assertLess(max_diff, 1e-4, "XFormers attention should not affect the inference results") def test_progress_bar(self): components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe.to(torch_device) inputs = self.get_dummy_inputs(torch_device) with io.StringIO() as stderr, contextlib.redirect_stderr(stderr): _ = pipe(**inputs) stderr = stderr.getvalue() # we can't calculate the number of progress steps beforehand e.g. for strength-dependent img2img, # so we just match "5" in "#####| 1/5 [00:01<00:00]" max_steps = re.search("/(.*?) ", stderr).group(1) self.assertTrue(max_steps is not None and len(max_steps) > 0) self.assertTrue( f"{max_steps}/{max_steps}" in stderr, "Progress bar should be enabled and stopped at the max step" ) pipe.set_progress_bar_config(disable=True) with io.StringIO() as stderr, contextlib.redirect_stderr(stderr): _ = pipe(**inputs) self.assertTrue(stderr.getvalue() == "", "Progress bar should be disabled") # Some models (e.g. unCLIP) are extremely likely to significantly deviate depending on which hardware is used. # This helper function is used to check that the image doesn't deviate on average more than 10 pixels from a # reference image. def assert_mean_pixel_difference(image, expected_image): image = np.asarray(DiffusionPipeline.numpy_to_pil(image)[0], dtype=np.float32) expected_image = np.asarray(DiffusionPipeline.numpy_to_pil(expected_image)[0], dtype=np.float32) avg_diff = np.abs(image - expected_image).mean() assert avg_diff < 10, f"Error image deviates {avg_diff} pixels on average"