File size: 10,109 Bytes
c0ec7e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
import collections
from importlib import resources
import os
import re
from typing import Optional, List

import numpy as np
from transformers import BertTokenizer

SMI_REGEX_PATTERN = r"""(\[[^\]]+]|Br?|Cl?|N|O|S|P|F|I|b|c|n|o|s|p|\(|\)|\.|=|#|-|\+|\\|\/|:|~|@|\?|>>?|\*|\$|\%[0-9]{2}|[0-9])"""
# \[[^\]]+\] # match anything inside square brackets
# |Br?|Cl?|N|O|S|P|F|I|b|c|n|o|s|p # match elements
# |\(|\) # match parentheses
# |\.|=|#|-|\+|\\|\/|:|~|@|\?|>>?|\*|\$|\%[0-9]{2} # match various symbols
# |[0-9] # match digits


def sequence_to_kmers(sequence, k=3):
    """ Divide a string into a list of kmers strings.

    Parameters:
        sequence (string)
        k (int), default 3
    Returns:
        List containing a list of kmers.
    """
    return [sequence[i:i + k] for i in range(len(sequence) - k + 1)]


def sequence_to_word_embedding(sequence, model):
    """Get protein embedding, infer a list of 3-mers to (num_word, 100) matrix"""
    kmers = sequence_to_kmers(sequence)
    vec = np.zeros((len(kmers), 100))
    i = 0
    for word in kmers:
        try:
            vec[i,] = model.wv[word]
        except KeyError:
            pass
        i += 1
    return vec


def sequence_to_token_ids(sequence, tokenizer):
    token_ids = tokenizer.encode(sequence)
    return np.array(token_ids)


# def sequence_to_token_ids(sequence, tokenizer, max_length: int):
#     token_ids = tokenizer.encode(sequence)
#     length = min(max_length, len(token_ids))
#
#     token_ids_padded = np.zeros(max_length, dtype='int')
#     token_ids_padded[:length] = token_ids[:length]
#
#     return token_ids_padded


class SmilesTokenizer(BertTokenizer):
    """
    Adapted from https://github.com/deepchem/deepchem/.

    Creates the SmilesTokenizer class. The tokenizer heavily inherits from the BertTokenizer
    implementation found in Huggingface's transformers library. It runs a WordPiece tokenization
    algorithm over SMILES strings using the tokenization SMILES regex developed by Schwaller et al.

    Please see https://github.com/huggingface/transformers
    and https://github.com/rxn4chemistry/rxnfp for more details.

    Examples
    --------
    >>> tokenizer = SmilesTokenizer(vocab_path, regex_pattern)
    >>> print(tokenizer.encode("CC(=O)OC1=CC=CC=C1C(=O)O"))
    [12, 16, 16, 17, 22, 19, 18, 19, 16, 20, 22, 16, 16, 22, 16, 16, 22, 16, 20, 16, 17, 22, 19, 18, 19, 13]


    References
    ----------
    .. [1] Schwaller, Philippe; Probst, Daniel; Vaucher, Alain C.; Nair, Vishnu H; Kreutter, David;
        Laino, Teodoro; et al. (2019): Mapping the Space of Chemical Reactions using Attention-Based Neural
        Networks. ChemRxiv. Preprint. https://doi.org/10.26434/chemrxiv.9897365.v3

    Note
    ----
    This class requires huggingface's transformers and tokenizers libraries to be installed.
    """

    def __init__(
            self,
            vocab_file: str = 'resources/vocabs/smiles.txt',
            regex_pattern: str = SMI_REGEX_PATTERN,
            # unk_token="[UNK]",
            # sep_token="[SEP]",
            # pad_token="[PAD]",
            # cls_token="[CLS]",
            # mask_token="[MASK]",
            **kwargs):
        """Constructs a SmilesTokenizer.

        Parameters
        ----------
        vocab_file: str
            Path to a SMILES character per line vocabulary file.
            Default vocab file is found in deepchem/feat/tests/data/vocab.txt
        """

        super().__init__(vocab_file, **kwargs)

        if not os.path.isfile(vocab_file):
            raise ValueError(
                "Can't find a vocab file at path '{}'.".format(vocab_file))
        self.vocab = load_vocab(vocab_file)
        unused_indexes = [i for i, v in enumerate(self.vocab.keys()) if v.startswith("[unused")]
        self.highest_unused_index = 0 if len(unused_indexes) == 0 else max(unused_indexes)
        self.ids_to_tokens = collections.OrderedDict([
            (ids, tok) for tok, ids in self.vocab.items()
        ])
        self.basic_tokenizer = BasicSmilesTokenizer(regex_pattern=regex_pattern)

    @property
    def vocab_size(self):
        return len(self.vocab)

    @property
    def vocab_list(self):
        return list(self.vocab.keys())

    def _tokenize(self, text: str, max_seq_length: int = 512, **kwargs):
        """Tokenize a string into a list of tokens.

        Parameters
        ----------
        text: str
            Input string sequence to be tokenized.
        """

        max_len_single_sentence = max_seq_length - 2
        split_tokens = [
            token for token in self.basic_tokenizer.tokenize(text)
            [:max_len_single_sentence]
        ]
        return split_tokens

    def _convert_token_to_id(self, token: str):
        """Converts a token (str/unicode) in an id using the vocab.

        Parameters
        ----------
        token: str
            String token from a larger sequence to be converted to a numerical id.
        """

        return self.vocab.get(token, self.vocab.get(self.unk_token))

    def _convert_id_to_token(self, index: int):
        """Converts an index (integer) in a token (string/unicode) using the vocab.

        Parameters
        ----------
        index: int
            Integer index to be converted back to a string-based token as part of a larger sequence.
        """

        return self.ids_to_tokens.get(index, self.unk_token)

    def convert_tokens_to_string(self, tokens: List[str]):
        """Converts a sequence of tokens (string) in a single string.

        Parameters
        ----------
        tokens: List[str]
            List of tokens for a given string sequence.

        Returns
        -------
        out_string: str
            Single string from combined tokens.
        """

        out_string: str = " ".join(tokens).replace(" ##", "").strip()
        return out_string

    def add_special_tokens_ids_single_sequence(self,
                                               token_ids: List[Optional[int]]):
        """Adds special tokens to a sequence for sequence classification tasks.

        A BERT sequence has the following format: [CLS] X [SEP]

        Parameters
        ----------
        token_ids: list[int]
            list of tokenized input ids. Can be obtained using the encode or encode_plus methods.
        """

        return [self.cls_token_id] + token_ids + [self.sep_token_id]

    def add_special_tokens_single_sequence(self, tokens: List[str]):
        """Adds special tokens to the a sequence for sequence classification tasks.
        A BERT sequence has the following format: [CLS] X [SEP]

        Parameters
        ----------
        tokens: List[str]
            List of tokens for a given string sequence.
        """
        return [self.cls_token] + tokens + [self.sep_token]

    def add_special_tokens_ids_sequence_pair(
            self, token_ids_0: List[Optional[int]],
            token_ids_1: List[Optional[int]]) -> List[Optional[int]]:
        """Adds special tokens to a sequence pair for sequence classification tasks.
        A BERT sequence pair has the following format: [CLS] A [SEP] B [SEP]

        Parameters
        ----------
        token_ids_0: List[int]
            List of ids for the first string sequence in the sequence pair (A).
        token_ids_1: List[int]
            List of tokens for the second string sequence in the sequence pair (B).
        """

        sep = [self.sep_token_id]
        cls = [self.cls_token_id]

        return cls + token_ids_0 + sep + token_ids_1 + sep

    def add_padding_tokens(self,
                           token_ids: List[Optional[int]],
                           length: int,
                           right: bool = True) -> List[Optional[int]]:
        """Adds padding tokens to return a sequence of length max_length.
        By default padding tokens are added to the right of the sequence.

        Parameters
        ----------
        token_ids: list[optional[int]]
            list of tokenized input ids. Can be obtained using the encode or encode_plus methods.
        length: int
        right: bool, default True

        Returns
        -------
        List[int]
        """
        padding = [self.pad_token_id] * (length - len(token_ids))

        if right:
            return token_ids + padding
        else:
            return padding + token_ids


class BasicSmilesTokenizer(object):
    """
    Adapted from https://github.com/deepchem/deepchem/.
    Run basic SMILES tokenization using a regex pattern developed by Schwaller et. al.
    This tokenizer is to be used when a tokenizer that does not require the transformers library by HuggingFace is required.

    Examples
    --------
    >>> tokenizer = BasicSmilesTokenizer()
    >>> print(tokenizer.tokenize("CC(=O)OC1=CC=CC=C1C(=O)O"))
    ['C', 'C', '(', '=', 'O', ')', 'O', 'C', '1', '=', 'C', 'C', '=', 'C', 'C', '=', 'C', '1', 'C', '(', '=', 'O', ')', 'O']


    References
    ----------
    .. [1] Philippe Schwaller, Teodoro Laino, Théophile Gaudin, Peter Bolgar, Christopher A. Hunter, Costas Bekas, and Alpha A. Lee
        ACS Central Science 2019 5 (9): Molecular Transformer: A Model for Uncertainty-Calibrated Chemical Reaction Prediction
        1572-1583 DOI: 10.1021/acscentsci.9b00576
    """

    def __init__(self, regex_pattern: str = SMI_REGEX_PATTERN):
        """Constructs a BasicSMILESTokenizer.

        Parameters
        ----------
        regex: string
            SMILES token regex
        """
        self.regex_pattern = regex_pattern
        self.regex = re.compile(self.regex_pattern)

    def tokenize(self, text):
        """Basic Tokenization of a SMILES.
        """
        tokens = [token for token in self.regex.findall(text)]
        return tokens


def load_vocab(vocab_file):
    """Loads a vocabulary file into a dictionary."""
    vocab = collections.OrderedDict()
    with open(vocab_file, "r", encoding="utf-8") as reader:
        tokens = reader.readlines()
    for index, token in enumerate(tokens):
        token = token.rstrip("\n")
        vocab[token] = index
    return vocab