File size: 8,053 Bytes
c0ec7e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
# from itertools import product
from numbers import Number
from pathlib import Path
from typing import Any, Dict, Optional, Sequence, Union, Literal

# import numpy as np
import pandas as pd
from lightning import LightningDataModule
from sklearn.base import TransformerMixin
from torch.utils.data import Dataset, DataLoader, random_split

from deepscreen.data.utils.dataset import SingleEntitySingleTargetDataset, BaseEntityDataset
from deepscreen.data.utils.label import label_transform
from deepscreen.data.utils.collator import collate_fn
from deepscreen.data.utils.sampler import SafeBatchSampler


class EntityDataModule(LightningDataModule):
    """
    DTI DataModule

    A DataModule implements 5 key methods:

        def prepare_data(self):
            # things to do on 1 GPU/TPU (not on every GPU/TPU in DDP)
            # download data, pre-process, split, save to disk, etc.
        def setup(self, stage):
            # things to do on every process in DDP
            # load data, set variables, etc.
        def train_dataloader(self):
            # return train dataloader
        def val_dataloader(self):
            # return validation dataloader
        def test_dataloader(self):
            # return test dataloader
        def teardown(self):
            # called on every process in DDP
            # clean up after fit or test

    This allows you to share a full dataset without explaining how to download,
    split, transform and process the data.

    Read the docs:
        https://pytorch-lightning.readthedocs.io/en/latest/extensions/datamodules.html
    """

    def __init__(
            self,
            dataset: type[BaseEntityDataset],
            task: Literal['regression', 'binary', 'multiclass'],
            n_classes: Optional[int],
            train: bool,
            batch_size: int,
            num_workers: int = 0,
            thresholds: Optional[Union[Number, Sequence[Number]]] = None,
            pin_memory: bool = False,
            data_dir: str = "data/",
            data_file: Optional[str] = None,
            train_val_test_split: Optional[Sequence[Number], Sequence[str]] = None,
            split: Optional[callable] = random_split,
    ):
        super().__init__()
        data_path = Path(data_dir) / data_file
        # this line allows to access init params with 'self.hparams' attribute
        # also ensures init params will be stored in ckpt
        self.save_hyperparameters(logger=False)

        # data processing
        self.split = split

        if train:
            if all([data_file, split]):
                if all(isinstance(split, Number) for split in train_val_test_split):
                    pass
                else:
                    raise ValueError('`train_val_test_split` must be a sequence of 3 numbers '
                                     '(float for percentages and int for sample numbers) if '
                                     '`data_file` and `split` have been specified.')
            elif all(isinstance(split, str) for split in train_val_test_split) and not any([data_file, split]):
                self.train_data = dataset(dataset_path=str(Path(data_dir) / train_val_test_split[0]))
                self.val_data = dataset(dataset_path=str(Path(data_dir) / train_val_test_split[1]))
                self.test_data = dataset(dataset_path=str(Path(data_dir) / train_val_test_split[2]))
            else:
                raise ValueError('For training (train=True), you must specify either '
                                 '`dataset_name` and `split` with `train_val_test_split` of 3 numbers or '
                                 'solely `train_val_test_split` of 3 data file names.')
        else:
            if data_file and not any([split, train_val_test_split]):
                self.test_data = self.predict_data = dataset(dataset_path=str(Path(data_dir) / data_file))
            else:
                raise ValueError("For testing/predicting (train=False), you must specify only `data_file` without "
                                 "`train_val_test_split` or `split`")

    def prepare_data(self):
        """
        Download data if needed.
        Do not use it to assign state (e.g., self.x = x).
        """

    def setup(self, stage: Optional[str] = None, encoding: str = None):
        """
        Load data. Set variables: `self.data_train`, `self.data_val`, `self.data_test`.
        This method is called by lightning with both `trainer.fit()` and `trainer.test()`, so be
        careful not to execute data splitting twice.
        """
        # load and split datasets only if not loaded in initialization
        if not any([self.data_train, self.data_val, self.data_test, self.data_predict]):
            dataset = SingleEntitySingleTargetDataset(
                task=self.hparams.task,
                n_classes=self.hparams.n_classes,
                dataset_path=Path(self.hparams.data_dir) / self.hparams.dataset_name,
                transformer=self.hparams.transformer,
                featurizer=self.hparams.featurizer,
                thresholds=self.hparams.thresholds,
            )

            if self.hparams.train:
                self.data_train, self.data_val, self.data_test = self.split(
                    dataset=dataset,
                    lengths=self.hparams.train_val_test_split
                )
            else:
                self.data_test = self.data_predict = dataset

    def train_dataloader(self):
        return DataLoader(
            dataset=self.data_train,
            batch_sampler=SafeBatchSampler(
                data_source=self.data_train,
                batch_size=self.hparams.batch_size,
                shuffle=True),
            # batch_size=self.hparams.batch_size,
            # shuffle=True,
            num_workers=self.hparams.num_workers,
            pin_memory=self.hparams.pin_memory,
            collate_fn=collate_fn,
            persistent_workers=True if self.hparams.num_workers > 0 else False
        )

    def val_dataloader(self):
        return DataLoader(
            dataset=self.data_val,
            batch_sampler=SafeBatchSampler(
                data_source=self.data_val,
                batch_size=self.hparams.batch_size,
                shuffle=False),
            # batch_size=self.hparams.batch_size,
            # shuffle=False,
            num_workers=self.hparams.num_workers,
            pin_memory=self.hparams.pin_memory,
            collate_fn=collate_fn,
            persistent_workers=True if self.hparams.num_workers > 0 else False
        )

    def test_dataloader(self):
        return DataLoader(
            dataset=self.data_test,
            batch_sampler=SafeBatchSampler(
                data_source=self.data_test,
                batch_size=self.hparams.batch_size,
                shuffle=False),
            # batch_size=self.hparams.batch_size,
            # shuffle=False,
            num_workers=self.hparams.num_workers,
            pin_memory=self.hparams.pin_memory,
            collate_fn=collate_fn,
            persistent_workers=True if self.hparams.num_workers > 0 else False
        )

    def predict_dataloader(self):
        return DataLoader(
            dataset=self.data_predict,
            batch_sampler=SafeBatchSampler(
                data_source=self.data_predict,
                batch_size=self.hparams.batch_size,
                shuffle=False),
            # batch_size=self.hparams.batch_size,
            # shuffle=False,
            num_workers=self.hparams.num_workers,
            pin_memory=self.hparams.pin_memory,
            collate_fn=collate_fn,
            persistent_workers=True if self.hparams.num_workers > 0 else False
        )

    def teardown(self, stage: Optional[str] = None):
        """Clean up after fit or test."""
        pass

    def state_dict(self):
        """Extra things to save to checkpoint."""
        return {}

    def load_state_dict(self, state_dict: Dict[str, Any]):
        """Things to do when loading checkpoint."""
        pass